File size: 3,544 Bytes
ad18a5b
d1e787c
 
4cd9bad
384ec64
d1e787c
4cd9bad
ad18a5b
4cd9bad
ad18a5b
384ec64
ad18a5b
 
 
 
 
 
 
 
 
 
 
 
384ec64
ad18a5b
 
 
4e26ea8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
384ec64
 
03168a3
 
 
 
 
 
 
 
 
 
 
 
 
384ec64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1e787c
4e26ea8
d1e787c
9c4025a
 
 
 
384ec64
 
 
03168a3
384ec64
 
 
03168a3
384ec64
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import pathlib
import os

import gradio as gr
import torch
from diffusers import StableDiffusionPipeline

import utils

use_auth_token = os.environ["HF_AUTH_TOKEN"]

# Instantiate the pipeline.
device, revision, torch_dtype = (
    ("cuda", "fp16", torch.float16)
    if torch.cuda.is_available()
    else ("cpu", "main", torch.float32)
)
pipeline = StableDiffusionPipeline.from_pretrained(
    pretrained_model_name_or_path="CompVis/stable-diffusion-v1-4",
    use_auth_token=use_auth_token,
    revision=revision,
    torch_dtype=torch_dtype,
).to(device)

# Load in the new concepts.
CONCEPT_PATH = pathlib.Path("learned_embeddings_dict.pt")
learned_embeddings_dict = torch.load(CONCEPT_PATH)

concept_to_dummy_tokens_map = {}
for concept_token, embedding_dict in learned_embeddings_dict.items():
    initializer_tokens = embedding_dict["initializer_tokens"]
    learned_embeddings = embedding_dict["learned_embeddings"]
    (
        initializer_ids,
        dummy_placeholder_ids,
        dummy_placeholder_tokens,
    ) = utils.add_new_tokens_to_tokenizer(
        concept_token=concept_token,
        initializer_tokens=initializer_tokens,
        tokenizer=pipeline.tokenizer,
    )
    pipeline.text_encoder.resize_token_embeddings(len(pipeline.tokenizer))
    token_embeddings = pipeline.text_encoder.get_input_embeddings().weight.data
    for d_id, tensor in zip(dummy_placeholder_ids, learned_embeddings):
        token_embeddings[d_id] = tensor
    concept_to_dummy_tokens_map[concept_token] = dummy_placeholder_tokens


def replace_concept_tokens(text: str):
    for concept_token, dummy_tokens in concept_to_dummy_tokens_map.items():
        text = text.replace(concept_token, dummy_tokens)
    return text


def inference(
    prompt: str, guidance_scale: int, num_inference_steps: int, seed: int
):
    prompt = replace_concept_tokens(prompt)
    generator = torch.Generator(device=device).manual_seed(seed)
    out = pipeline(
        prompt=[prompt] * 2,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        generator=generator,
    )
    img_list = [item['sample'] for item in out]
    return img_list

DEFAULT_PROMPT = (
    "A watercolor painting on textured paper of a <det-logo> using soft strokes,"
    " pastel colors, incredible composition, masterpiece"
)

with gr.Blocks() as demo:
    prompt = gr.Textbox(
        label="Prompt including the token '<det-logo>'",
        placeholder=DEFAULT_PROMPT,
        interactive=True,
    )
    guidance_scale = gr.Slider(
        minimum=1.0, maximum=10.0, value=3.0, label="Guidance Scale", interactive=True
    )
    num_inference_steps = gr.Slider(
        minimum=25,
        maximum=60,
        value=40,
        label="Num Inference Steps",
        interactive=True,
        step=1,
    )
    seed = gr.Slider(
        minimum=2147483147,
        maximum=2147483647,
        value=2147483397,
        label="Seed",
        interactive=True,
    )
    output = gr.Textbox(
        label="output", placeholder=use_auth_token[:5], interactive=False
    )
    gr.Button("test").click(
        lambda s: replace_concept_tokens(s), inputs=[prompt], outputs=output
    )

    generate_btn = gr.Button(label="Generate")
    gallery = gr.Gallery(
        label="Generated Images",
        value=[torch.ones(512, 512, 3).numpy() for _ in range(2)],
    ).style(height="auto")

    generate_btn.click(
        inference,
        inputs=[prompt, guidance_scale, num_inference_steps, seed],
        outputs=gallery,
    )

demo.launch()