Spaces:
Runtime error
Runtime error
File size: 13,745 Bytes
e3f97f3 ad18a5b d1e787c 4811b12 d1e787c 4cd9bad 384ec64 d1e787c 4cd9bad ad18a5b 4cd9bad ad18a5b 4811b12 e3f97f3 384ec64 ad18a5b 384ec64 ad18a5b 4e26ea8 384ec64 e3f97f3 03168a3 4811b12 e3f97f3 03168a3 4811b12 e3f97f3 384ec64 9c4025a e3f97f3 384ec64 e3f97f3 384ec64 e3f97f3 384ec64 e3f97f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
"""The model used in this Space alters the underlying Stable Diffusion model available at
https://huggingface.co/CompVis/stable-diffusion-v1-4 through the addition of new embedding vectors
in order to capture the likeness of the Determined AI logo. These alternations are fully captured
in the learned_embeddings_dict.pt pickle file in the root of the repository."""
import pathlib
import os
from PIL import Image
import gradio as gr
import torch
from diffusers import StableDiffusionPipeline
import utils
use_auth_token = os.environ["HF_AUTH_TOKEN"]
NSFW_IMAGE = Image.open("nsfw.png")
BATCH_SIZE = 2
# Instantiate the pipeline.
device, revision, torch_dtype = (
("cuda", "fp16", torch.float16)
if torch.cuda.is_available()
else ("cpu", "main", torch.float32)
)
pipeline = StableDiffusionPipeline.from_pretrained(
pretrained_model_name_or_path="CompVis/stable-diffusion-v1-4",
use_auth_token=use_auth_token,
revision=revision,
torch_dtype=torch_dtype,
).to(device)
# Load in the new concepts.
CONCEPT_PATH = pathlib.Path("learned_embeddings_dict.pt")
learned_embeddings_dict = torch.load(CONCEPT_PATH)
concept_to_dummy_tokens_map = {}
for concept_token, embedding_dict in learned_embeddings_dict.items():
initializer_tokens = embedding_dict["initializer_tokens"]
learned_embeddings = embedding_dict["learned_embeddings"]
(
initializer_ids,
dummy_placeholder_ids,
dummy_placeholder_tokens,
) = utils.add_new_tokens_to_tokenizer(
concept_token=concept_token,
initializer_tokens=initializer_tokens,
tokenizer=pipeline.tokenizer,
)
pipeline.text_encoder.resize_token_embeddings(len(pipeline.tokenizer))
token_embeddings = pipeline.text_encoder.get_input_embeddings().weight.data
for d_id, tensor in zip(dummy_placeholder_ids, learned_embeddings):
token_embeddings[d_id] = tensor
concept_to_dummy_tokens_map[concept_token] = dummy_placeholder_tokens
def replace_concept_tokens(text: str):
for concept_token, dummy_tokens in concept_to_dummy_tokens_map.items():
text = text.replace(concept_token, dummy_tokens)
return text
all_imgs = []
def inference(prompt: str, guidance_scale: int, num_inference_steps: int, seed: int):
prompt = replace_concept_tokens(prompt)
generator = torch.Generator(device=device).manual_seed(seed)
output = pipeline(
prompt=[prompt] * BATCH_SIZE,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=generator,
)
img_list, nsfw_list = output.images, output.nsfw_content_detected
filtered_imgs = [
img if not nsfw else NSFW_IMAGE for img, nsfw in zip(img_list, nsfw_list)
]
all_imgs.extend(filtered_imgs)
return all_imgs
css = """
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
}
.gr-button {
color: white;
border-color: black;
background: black;
}
input[type='range'] {
accent-color: black;
}
.dark input[type='range'] {
accent-color: #dfdfdf;
}
.container {
max-width: 730px;
margin: auto;
padding-top: 1.5rem;
}
#gallery {
min-height: 22rem;
margin-bottom: 15px;
margin-left: auto;
margin-right: auto;
border-bottom-right-radius: .5rem !important;
border-bottom-left-radius: .5rem !important;
}
#gallery>div>.h-full {
min-height: 20rem;
}
.details:hover {
text-decoration: underline;
}
.gr-button {
white-space: nowrap;
}
.gr-button:focus {
border-color: rgb(147 197 253 / var(--tw-border-opacity));
outline: none;
box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
--tw-border-opacity: 1;
--tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
--tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
--tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
--tw-ring-opacity: .5;
}
#advanced-btn {
font-size: .7rem !important;
line-height: 19px;
margin-top: 12px;
margin-bottom: 12px;
padding: 2px 8px;
border-radius: 14px !important;
}
#advanced-options {
display: none;
margin-bottom: 20px;
}
.footer {
margin-bottom: 45px;
margin-top: 35px;
text-align: center;
border-bottom: 1px solid #e5e5e5;
}
.footer>p {
font-size: .8rem;
display: inline-block;
padding: 0 10px;
transform: translateY(10px);
background: white;
}
.dark .footer {
border-color: #303030;
}
.dark .footer>p {
background: #0b0f19;
}
.acknowledgments h4{
margin: 1.25em 0 .25em 0;
font-weight: bold;
font-size: 115%;
}
#container-advanced-btns{
display: flex;
flex-wrap: wrap;
justify-content: space-between;
align-items: center;
}
.animate-spin {
animation: spin 1s linear infinite;
}
@keyframes spin {
from {
transform: rotate(0deg);
}
to {
transform: rotate(360deg);
}
}
#share-btn-container {
display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
}
#share-btn {
all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;
}
#share-btn * {
all: unset;
}
.gr-form{
flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0;
}
#prompt-container{
gap: 0;
}
"""
block = gr.Blocks(css=css)
examples = [
[
"a Van Gogh painting of a <det-logo> with thick strokes, masterful composition",
# 4,
# 45,
# 7.5,
# 1024,
],
[
"Futuristic <det-logo> in a desert, painting, octane render, 4 k, anime sky, warm colors",
# 4,
# 45,
# 7,
# 1024,
],
[
"cell shaded cartoon of a <det-logo>, subtle colors, post grunge, concept art by josan gonzales and wlop, by james jean, victo ngai, david rubin, mike mignola, deviantart, art by artgem",
# 4,
# 45,
# 7,
# 1024,
],
[
"a <det-logo> cloudy sky background lush landscape illustration concept art anime key visual trending pixiv fanbox by wlop and greg rutkowski and makoto shinkai and studio ghibli",
# 4,
# 45,
# 7,
# 1024,
],
[
"Immense <det-logo> advanced technology scifi architectural structure desert planet alien wardrobe tim hildebrandt, wayne barlowe, bruce pennington, donato giancola, larry elmore, oil on canvas, masterpiece, trending on artstation, featured on pixiv, cinematic composition, dramatic, beautiful lighting",
# 4,
# 45,
# 7,
# 1024,
],
]
with block:
gr.HTML(
"""
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px;">
Determined AI Textual Inversion Demo
</h1>
</div>
</div>
"""
)
with gr.Group():
with gr.Box():
with gr.Row(elem_id="prompt-container").style(equal_height=True):
prompt = gr.Textbox(
label="Enter a prompt including '<det-logo>'",
show_label=False,
max_lines=1,
placeholder="Enter a prompt including '<det-logo>'",
elem_id="prompt-text-input",
).style(
container=False,
)
btn = gr.Button("Generate image").style(
full_width=False,
)
gallery = gr.Gallery(
label="Generated images", show_label=False, elem_id="gallery"
).style(grid=[BATCH_SIZE], height="auto")
with gr.Group(elem_id="container-advanced-btns"):
advanced_button = gr.Button("Advanced options", elem_id="advanced-btn")
with gr.Row(elem_id="advanced-options"):
num_inference_steps = gr.Slider(
label="Steps", minimum=20, maximum=60, value=40, step=1
)
guidance_scale = gr.Slider(
label="Guidance Scale", minimum=1.0, maximum=30.0, value=4.0, step=0.1
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=2147483647,
step=1,
randomize=True,
)
ex = gr.Examples(
examples=examples,
fn=inference,
inputs=[prompt, guidance_scale, num_inference_steps, seed],
outputs=[gallery],
cache_examples=False,
)
ex.dataset.headers = [""]
prompt.submit(
inference,
inputs=[prompt, guidance_scale, num_inference_steps, seed],
outputs=[gallery],
)
btn.click(
inference,
inputs=[prompt, guidance_scale, num_inference_steps, seed],
outputs=[gallery],
)
advanced_button.click(
None,
[],
prompt,
_js="""
() => {
var appDom = document.querySelector("body > gradio-app");
var options = appDom.querySelector("#advanced-options")
if (options == null) {options = appDom.shadowRoot.querySelector("#advanced-options")}
options.style.display = ["none", ""].includes(options.style.display) ? "flex" : "none";
}""",
)
gr.HTML(
"""
<div class="footer">
<p>Underlying model by <a href="https://huggingface.co/CompVis" style="text-decoration: underline;" target="_blank">CompVis</a> and <a href="https://huggingface.co/stabilityai" style="text-decoration: underline;" target="_blank">Stability AI</a> - Gradio code based on the <a href="https://huggingface.co/spaces/stabilityai/stable-diffusion" style="text-decoration: underline;" target="_blank">Stability AI Demo</a>
</p>
</div>
<div class="acknowledgments">
<p><h4>LICENSE</h4>
The model is licensed with a <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license" style="text-decoration: underline;" target="_blank">CreativeML Open RAIL-M</a> license. The authors claim no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in this license. The license forbids you from sharing any content that violates any laws, produce any harm to a person, disseminate any personal information that would be meant for harm, spread misinformation and target vulnerable groups. For the full list of restrictions please <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license" target="_blank" style="text-decoration: underline;" target="_blank">read the license</a></p>
<p><h4>Model Changes</h4>
The model used in this Space alters the underlying <a href="https://huggingface.co/CompVis/stable-diffusion-v1-4" style="text-decoration: underline;" target="_blank">stable-diffusion-v1-4</a> model through the addition of new embedding vectors in order to capture the likeness of the <a href="https://www.determined.ai" style="text-decoration: underline;" target="_blank">Determined AI</a> logo.</p>
<p><h4>Biases and content acknowledgment</h4>
Despite how impressive being able to turn text into image is, beware to the fact that this model may output content that reinforces or exacerbates societal biases, as well as realistic faces, pornography and violence. The model was trained on the <a href="https://laion.ai/blog/laion-5b/" style="text-decoration: underline;" target="_blank">LAION-5B dataset</a>, which scraped non-curated image-text-pairs from the internet (the exception being the removal of illegal content) and is meant for research purposes. You can read more in the <a href="https://huggingface.co/CompVis/stable-diffusion-v1-4" style="text-decoration: underline;" target="_blank">model card</a></p>
</div>
"""
)
block.queue(max_size=10).launch(share=True, enable_queue=True)
|