File size: 3,570 Bytes
ad18a5b
d1e787c
4811b12
d1e787c
4cd9bad
384ec64
d1e787c
4cd9bad
ad18a5b
4cd9bad
ad18a5b
4811b12
384ec64
ad18a5b
 
 
 
 
 
 
 
 
 
 
 
384ec64
ad18a5b
 
 
4e26ea8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
384ec64
4811b12
03168a3
 
 
 
 
4811b12
03168a3
 
 
 
4811b12
 
 
 
 
 
 
 
384ec64
 
 
 
 
 
 
 
 
 
 
 
 
4811b12
384ec64
 
 
4811b12
384ec64
 
 
 
 
 
 
 
 
 
4811b12
384ec64
9c4025a
4811b12
384ec64
 
eae426c
384ec64
 
 
03168a3
384ec64
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import pathlib
import os
from PIL import Image

import gradio as gr
import torch
from diffusers import StableDiffusionPipeline

import utils

use_auth_token = os.environ["HF_AUTH_TOKEN"]
NSFW_IMAGE = Image.open("nsfw.png")

# Instantiate the pipeline.
device, revision, torch_dtype = (
    ("cuda", "fp16", torch.float16)
    if torch.cuda.is_available()
    else ("cpu", "main", torch.float32)
)
pipeline = StableDiffusionPipeline.from_pretrained(
    pretrained_model_name_or_path="CompVis/stable-diffusion-v1-4",
    use_auth_token=use_auth_token,
    revision=revision,
    torch_dtype=torch_dtype,
).to(device)

# Load in the new concepts.
CONCEPT_PATH = pathlib.Path("learned_embeddings_dict.pt")
learned_embeddings_dict = torch.load(CONCEPT_PATH)

concept_to_dummy_tokens_map = {}
for concept_token, embedding_dict in learned_embeddings_dict.items():
    initializer_tokens = embedding_dict["initializer_tokens"]
    learned_embeddings = embedding_dict["learned_embeddings"]
    (
        initializer_ids,
        dummy_placeholder_ids,
        dummy_placeholder_tokens,
    ) = utils.add_new_tokens_to_tokenizer(
        concept_token=concept_token,
        initializer_tokens=initializer_tokens,
        tokenizer=pipeline.tokenizer,
    )
    pipeline.text_encoder.resize_token_embeddings(len(pipeline.tokenizer))
    token_embeddings = pipeline.text_encoder.get_input_embeddings().weight.data
    for d_id, tensor in zip(dummy_placeholder_ids, learned_embeddings):
        token_embeddings[d_id] = tensor
    concept_to_dummy_tokens_map[concept_token] = dummy_placeholder_tokens


def replace_concept_tokens(text: str):
    for concept_token, dummy_tokens in concept_to_dummy_tokens_map.items():
        text = text.replace(concept_token, dummy_tokens)
    return text

all_generated_images = []
def inference(
    prompt: str, guidance_scale: int, num_inference_steps: int, seed: int
):
    prompt = replace_concept_tokens(prompt)
    generator = torch.Generator(device=device).manual_seed(seed)
    output = pipeline(
        prompt=[prompt] * 2,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        generator=generator,
    )
    img_list, nsfw_list = output.images, output.nsfw_content_detected
    for img, nsfw in zip(img_list, nsfw_list):
        if nsfw:
            all_generated_images.append(NSFW_IMAGE)
        else:
            all_generated_images.append(img)
    return all_generated_images

DEFAULT_PROMPT = (
    "A watercolor painting on textured paper of a <det-logo> using soft strokes,"
    " pastel colors, incredible composition, masterpiece"
)

with gr.Blocks() as demo:
    prompt = gr.Textbox(
        label="Prompt including the token '<det-logo>'",
        placeholder=DEFAULT_PROMPT,
        interactive=True,
    )
    guidance_scale = gr.Slider(
        minimum=1.0, maximum=20.0, value=3.0, label="Guidance Scale", interactive=True
    )
    num_inference_steps = gr.Slider(
        minimum=25,
        maximum=75,
        value=40,
        label="Num Inference Steps",
        interactive=True,
        step=1,
    )
    seed = gr.Slider(
        minimum=2147483147,
        maximum=2147483647,
        label="Seed",
        interactive=True,
        randomize=True
    )

    generate_btn = gr.Button(value="Generate")
    gallery = gr.Gallery(
        label="Generated Images",
        value=[],
    ).style(height="auto")

    generate_btn.click(
        inference,
        inputs=[prompt, guidance_scale, num_inference_steps, seed],
        outputs=gallery,
    )

demo.launch()