File size: 3,753 Bytes
ad18a5b
d1e787c
 
4cd9bad
384ec64
d1e787c
4cd9bad
ad18a5b
4cd9bad
ad18a5b
384ec64
ad18a5b
 
 
 
 
 
 
 
 
 
 
 
384ec64
ad18a5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
384ec64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1e787c
 
 
9c4025a
 
 
 
384ec64
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import pathlib
import os

import gradio as gr
import torch
from diffusers import StableDiffusionPipeline

import utils

use_auth_token = os.environ["HF_AUTH_TOKEN"]

# Instantiate the pipeline.
device, revision, torch_dtype = (
    ("cuda", "fp16", torch.float16)
    if torch.cuda.is_available()
    else ("cpu", "main", torch.float32)
)
pipeline = StableDiffusionPipeline.from_pretrained(
    pretrained_model_name_or_path="CompVis/stable-diffusion-v1-4",
    use_auth_token=use_auth_token,
    revision=revision,
    torch_dtype=torch_dtype,
).to(device)

# Load in the new concepts.
CONCEPT_PATH = pathlib.Path("learned_embeddings_dict.pt")
learned_embeddings_dict = torch.load(CONCEPT_PATH)
#
# concept_to_dummy_tokens_map = {}
# for concept_token, embedding_dict in learned_embeddings_dict.items():
#     initializer_tokens = embedding_dict["initializer_tokens"]
#     learned_embeddings = embedding_dict["learned_embeddings"]
#     (
#         initializer_ids,
#         dummy_placeholder_ids,
#         dummy_placeholder_tokens,
#     ) = utils.add_new_tokens_to_tokenizer(
#         concept_token=concept_token,
#         initializer_tokens=initializer_tokens,
#         tokenizer=pipeline.tokenizer,
#     )
#     pipeline.text_encoder.resize_token_embeddings(len(pipeline.tokenizer))
#     token_embeddings = pipeline.text_encoder.get_input_embeddings().weight.data
#     for d_id, tensor in zip(dummy_placeholder_ids, learned_embeddings):
#         token_embeddings[d_id] = tensor
#     concept_to_dummy_tokens_map[concept_token] = dummy_placeholder_tokens
#
#
# def replace_concept_tokens(text: str):
#     for concept_token, dummy_tokens in concept_to_dummy_tokens_map.items():
#         text = text.replace(concept_token, dummy_tokens)
#     return text


# def inference(
#     prompt: str, num_inference_steps: int = 50, guidance_scale: int = 3.0
# ):
#     prompt = replace_concept_tokens(prompt)
#     for _ in range(3):
#         img_list = pipeline(
#             prompt=prompt,
#             num_inference_steps=num_inference_steps,
#             guidance_scale=guidance_scale,
#         )
#         if not img_list["nsfw_content_detected"]:
#             break
#     return img_list["sample"]

DEFAULT_PROMPT = (
    "A watercolor painting on textured paper of a <det-logo> using soft strokes,"
    " pastel colors, incredible composition, masterpiece"
)


def white_imgs(prompt: str, guidance_scale: float, num_inference_steps: int, seed: int):
    return [torch.ones(512, 512, 3).numpy() for _ in range(2)]


with gr.Blocks() as demo:
    prompt = gr.Textbox(
        label="Prompt including the token '<det-logo>'",
        placeholder=DEFAULT_PROMPT,
        interactive=True,
    )
    guidance_scale = gr.Slider(
        minimum=1.0, maximum=10.0, value=3.0, label="Guidance Scale", interactive=True
    )
    num_inference_steps = gr.Slider(
        minimum=25,
        maximum=60,
        value=40,
        label="Num Inference Steps",
        interactive=True,
        step=1,
    )
    seed = gr.Slider(
        minimum=2147483147,
        maximum=2147483647,
        value=2147483397,
        label="Seed",
        interactive=True,
    )
    output = gr.Textbox(
        label="output", placeholder=use_auth_token[:10], interactive=False
    )
    gr.Button("test").click(
        lambda s: replace_concept_tokens(s), inputs=[prompt], outputs=output
    )

    generate_btn = gr.Button(label="Generate")
    gallery = gr.Gallery(
        label="Generated Images",
        value=[torch.zeros(512, 512, 3).numpy() for _ in range(2)],
    ).style(height="auto")

    generate_btn.click(
        white_imgs,
        inputs=[prompt, guidance_scale, num_inference_steps, seed],
        outputs=gallery,
    )

demo.launch()