File size: 16,682 Bytes
e3f97f3
 
 
 
 
ad18a5b
d1e787c
4811b12
d1e787c
4cd9bad
384ec64
d1e787c
4cd9bad
ad18a5b
4cd9bad
ad18a5b
4811b12
e3f97f3
384ec64
ad18a5b
 
 
 
 
 
 
 
 
 
 
 
384ec64
ad18a5b
 
 
4e26ea8
1da6b3f
4e26ea8
1da6b3f
4e26ea8
 
 
 
1da6b3f
4e26ea8
1da6b3f
 
4e26ea8
 
 
 
 
 
1da6b3f
4e26ea8
 
1da6b3f
 
 
4e26ea8
384ec64
e3f97f3
c8be5d9
 
1da6b3f
 
 
03168a3
4811b12
e3f97f3
03168a3
 
 
4811b12
 
e3f97f3
 
 
5f1ae9e
384ec64
9c4025a
e3f97f3
 
d2df002
 
 
 
 
bb2f2c4
 
 
d2df002
 
 
 
 
 
 
 
 
 
 
 
bb2f2c4
 
 
d2df002
 
 
 
bb2f2c4
d2df002
 
 
 
 
 
e3f97f3
 
d2df002
 
 
 
 
 
 
 
 
 
 
e3f97f3
d2df002
e3f97f3
bb2f2c4
 
 
 
 
e3f97f3
d2df002
e3f97f3
 
 
 
 
 
 
 
d2df002
e3f97f3
 
c8be5d9
e3f97f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2df002
e3f97f3
 
 
 
 
 
d2df002
 
e3f97f3
bb2f2c4
 
 
 
 
 
 
 
 
 
7b17c3f
e3f97f3
 
 
fa97f50
d2df002
 
 
c8be5d9
 
 
 
 
 
 
 
 
 
 
e3f97f3
c8be5d9
 
e3f97f3
 
d2df002
 
e3f97f3
 
 
 
 
 
d2df002
e3f97f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2df002
c8be5d9
d2df002
 
 
 
 
e3f97f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
384ec64
e3f97f3
 
 
 
6ba9fa5
e3f97f3
 
 
 
 
 
6ba9fa5
e3f97f3
6ba9fa5
e3f97f3
 
 
 
6ba9fa5
ef5e1e6
 
 
 
 
e3f97f3
 
 
 
 
 
c8be5d9
e3f97f3
 
 
 
c8be5d9
e3f97f3
 
c8be5d9
e3f97f3
 
 
 
 
384ec64
e3f97f3
 
 
 
1da6b3f
e3f97f3
 
1da6b3f
e3f97f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55b5748
e3f97f3
 
5f1ae9e
e3f97f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2df002
c8be5d9
d2df002
 
 
 
 
 
 
 
fa97f50
 
d2df002
 
 
fa97f50
d2df002
 
 
 
 
 
 
c8be5d9
 
d2df002
 
 
e3f97f3
 
d2df002
e3f97f3
 
 
 
 
384ec64
d2df002
55b5748
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
"""The model used in this Space alters the underlying Stable Diffusion model available at
https://huggingface.co/CompVis/stable-diffusion-v1-4 through the addition of new embedding vectors
in order to capture the likeness of the Determined AI logo.  These alternations are fully captured
in the learned_embeddings_dict.pt pickle file in the root of the repository."""

import pathlib
import os
from PIL import Image

import gradio as gr
import torch
from diffusers import StableDiffusionPipeline

import utils

use_auth_token = os.environ["HF_AUTH_TOKEN"]
NSFW_IMAGE = Image.open("nsfw.png")
BATCH_SIZE = 2

# Instantiate the pipeline.
device, revision, torch_dtype = (
    ("cuda", "fp16", torch.float16)
    if torch.cuda.is_available()
    else ("cpu", "main", torch.float32)
)
pipeline = StableDiffusionPipeline.from_pretrained(
    pretrained_model_name_or_path="CompVis/stable-diffusion-v1-4",
    use_auth_token=use_auth_token,
    revision=revision,
    torch_dtype=torch_dtype,
).to(device)

# Load in the new concepts.
CONCEPT_PATH = pathlib.Path("learned_embeddings_dict.pt")
learned_embeddings_dict = torch.load(CONCEPT_PATH)

concept_to_dummy_strs_map = {}
for concept_token, embedding_dict in learned_embeddings_dict.items():
    initializer_strs = embedding_dict["initializer_strs"]
    learned_embeddings = embedding_dict["learned_embeddings"]
    (
        initializer_ids,
        dummy_placeholder_ids,
        dummy_placeholder_strs,
    ) = utils.add_new_tokens_to_tokenizer(
        concept_str=concept_token,
        initializer_strs=initializer_strs,
        tokenizer=pipeline.tokenizer,
    )
    pipeline.text_encoder.resize_token_embeddings(len(pipeline.tokenizer))
    token_embeddings = pipeline.text_encoder.get_input_embeddings().weight.data
    for d_id, tensor in zip(dummy_placeholder_ids, learned_embeddings):
        token_embeddings[d_id] = tensor
    concept_to_dummy_strs_map[concept_token] = dummy_placeholder_strs


def replace_concept_strs(text: str):
    for concept_token, dummy_strs in concept_to_dummy_strs_map.items():
        text = text.replace(concept_token, dummy_strs)
    return text

def inference(prompt: str, guidance_scale: int, num_inference_steps: int, seed: int):
    if not prompt:
        raise ValueError("Please enter a prompt.")
    if 'det-logo' not in prompt:
        raise ValueError('"det-logo" must be included in the prompt.')
    prompt = replace_concept_strs(prompt)
    generator = torch.Generator(device=device).manual_seed(seed)
    output = pipeline(
        prompt=[prompt] * BATCH_SIZE,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        generator=generator,
    )
    img_list, nsfw_list = output.images, output.nsfw_content_detected
    filtered_imgs = [
        img if not nsfw else NSFW_IMAGE for img, nsfw in zip(img_list, nsfw_list)
    ]
    return filtered_imgs


css = """
        .gradio-container {
            font-family: 'Roboto', sans-serif; background-color: white !important; font-color: black !important;
        }
        .flex-grow {
            font-family: 'Roboto', sans-serif; background-color: white !important; font-color: black !important;
        }
        .font-mono {
            font-family: 'Roboto', sans-serif; background-color: white !important; font-color: black !important;
        }
        .gr-padded {
            font-family: 'Roboto', sans-serif; background-color: white !important; font-color: black !important; color: black !important;
        }
        .bg-gray-700 {
            font-family: 'Roboto', sans-serif; background-color: white !important; font-color: black !important; color: white !important;
        }
        .gr-box {
            font-family: 'Roboto', sans-serif; background-color: white !important; font-color: black !important; color: black !important;
        }
        .h-6 {
            font-family: 'Roboto', sans-serif; background-color: white !important; font-color: black !important;
        }
        .h-6 {
            font-family: 'Roboto', sans-serif; background-color: white !important; font-color: black !important;
        }
        .gr-samples-gallery {
            font-family: 'Roboto', sans-serif; background-color: white !important; font-color: black !important; color: black !important;
        }
        .gr-sample-textbox:hover {
            font-family: 'Roboto', sans-serif; background-color: #BAD7DF !important; font-color: black !important; color: black !important;
        }
        h1 {
            font-family: 'Roboto', sans-serif;  color: black !important;
        }
        .text-gray-500 {
            font-family: 'Roboto', sans-serif;  color: black !important;
        }
        .gr-button {
            color: white !important;
            border-color: black;
            background: white !important;
        }
        .flex-wrap {
            color: white !important;
            border-color: white !important;
            background: white !important;
        }
        .grow-0 {
            color: black !important;
            border-color: black;
            background: white !important;
        }
        .grow-0:hover {
            color: black !important;
            border-color: black;
            background: #BAD7DF !important;
        }
        input[type='range'] {
            accent-color: white;
        }
        .dark input[type='range'] {
            accent-color: #dfdfdf;
        }
        .container {
            max-width: 730px;
            margin: auto;
            padding-top: 1.5rem;
            background: white;
        }
        #gallery {
            margin-bottom: 1rem;
            margin-left: auto;
            margin-right: auto;
            border-bottom-right-radius: .5rem !important;
            border-bottom-left-radius: .5rem !important;
        }
        #gallery>div>.h-full {
            min-height: 20rem;
        }
        .details:hover {
            text-decoration: underline;
        }
        .gr-button {
            white-space: nowrap;
        }
        .gr-button:focus {
            border-color: rgb(147 197 253 / var(--tw-border-opacity));
            outline: none;
            box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
            --tw-border-opacity: 1;
            --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
            --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
            --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
            --tw-ring-opacity: .5;
        }
        #advanced-btn, #license-btn {
            font-size: .7rem !important;
            line-height: 19px;
            margin-top: 12px;
            margin-bottom: 12px;
            padding: 2px 8px;
            border-radius: 14px !important;
            background: white !important;
            color: black !important;
        }
        #license-btn:hover {
            color: black !important;
            border-color: black;
            background: #BAD7DF !important;
        }
        #advanced-btn:hover {
            color: black !important;
            border-color: black;
            background: #BAD7DF !important;
        }
        #advanced-option`s {
            display: none;
            margin-bottom: 20px;
        }
        #license-display {
            display: none;
            margin-bottom: 20px;
        }
        #component-1 {
            max-height: 3rem;
            margin-bottom: 1rem;
            margin-left: auto;
            margin-right: auto;
            border-bottom-right-radius: .5rem !important;
            border-bottom-left-radius: .5rem !important;
        }
        #component-21 {
            max-height: 2rem;
        }
        .footer {
            margin-bottom: 0px;
            margin-top: 0px;
            text-align: center;
            border-bottom: 1px solid #e5e5e5;
            background: white !important;
            color: black !important;
        }
        .footer>p {
            font-size: .8rem;
            display: inline-block;
            padding: 0 10px;
            transform: translateY(10px);
            background: white !important;
        }
        .dark .footer {
            border-color: #303030;
        }
        .dark .footer>p {
            background: #0b0f19;
        }
        .acknowledgments h4{
            margin: 1.25em 0 .25em 0;
            font-weight: bold;
            font-size: 115%;
        }
        #container-advanced-btns{
            display: flex;
            flex-wrap: wrap;
            justify-content: space-between;
            align-items: center;
        }
        #container-license-btns{
            margin: 1.25em 0 .25em 0;
            display: flex;
            flex-wrap: wrap;
            justify-content: space-between;
            align-items: center;
        }
        .animate-spin {
            animation: spin 1s linear infinite;
        }
        @keyframes spin {
            from {
                transform: rotate(0deg);
            }
            to {
                transform: rotate(360deg);
            }
        }
        .gr-form{
            flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0;
        }
        #prompt-container{
            gap: 0;
        }
"""

block = gr.Blocks(css=css)

examples = [
    [
        "A surrealist oil painting by Salvador Dali of a det-logo using soft, blended colors",
        #        4,
        #        45,
        #        7.5,
        #        1024,
    ],
    [
        "Beautiful tarot illustration of a det-logo, in the style of james jean and victo ngai, mystical colors, trending on artstation",
        #        4,
        #        45,`
        #        7,
        #        1024,
    ],
    [
        "Black and white ink doodle illustration of an overgrown det-logo, style by peter deligdisch, peterdraws",
        #        4,
        #        45,
        #        7,
        #        1024,
    ],
]


with block:
    gr.HTML(
        """
            <div style="text-align: center; max-width: 650px; margin: 1.25em 0 .25em 0;">
              <div
                style="
                  display: inline-flex;
                  align-items: center;
                  font-size: 1.5rem;
                "
              >
                <h1 style="font-weight: 600;">
                  Determined AI Textual Inversion Demo
                </h1>
              </div>
            </div>
        """
    )
    with gr.Group():
        with gr.Box():
            with gr.Row(elem_id="prompt-container").style(equal_height=True):
                prompt = gr.Textbox(
                    label='Enter a prompt including "det-logo"',
                    show_label=False,
                    max_lines=1,
                    placeholder='Enter a prompt including "det-logo"',
                    elem_id="prompt-text-input",
                ).style(
                    container=False,
                )
                btn = gr.Button("Generate image").style(
                    full_width=False,
                )

        gallery = gr.Gallery(
            label="Generated images", show_label=False, elem_id="gallery"
        ).style(grid=[BATCH_SIZE], height="auto")

        with gr.Group(elem_id="container-advanced-btns"):
            advanced_button = gr.Button("Advanced options", elem_id="advanced-btn")

        with gr.Row(elem_id="advanced-options"):
            num_inference_steps = gr.Slider(
                label="Steps", minimum=1, maximum=80, value=50, step=1
            )
            guidance_scale = gr.Slider(
                label="Guidance Scale", minimum=1.0, maximum=25.0, value=7.5, step=0.1
            )
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=2147483647,
                step=1,
                randomize=True,
            )

        ex = gr.Examples(
            examples=examples,
            fn=inference,
            inputs=[prompt, guidance_scale, num_inference_steps, seed],
            outputs=[gallery],
            cache_examples=False,
        )
        ex.dataset.headers = [""]

        prompt.submit(
            inference,
            inputs=[prompt, guidance_scale, num_inference_steps, seed],
            outputs=[gallery],
        )
        btn.click(
            inference,
            inputs=[prompt, guidance_scale, num_inference_steps, seed],
            outputs=[gallery],
        )
        advanced_button.click(
            None,
            [],
            prompt,
            _js="""
            () => {
                var appDom = document.querySelector("body > gradio-app");
                var options = appDom.querySelector("#advanced-options")
                if (options == null) {options = appDom.shadowRoot.querySelector("#advanced-options")}
                options.style.display = ["none", ""].includes(options.style.display) ? "flex" : "none";
            }""",
        )
        with gr.Group(elem_id="container-license-btns"):
            license_button = gr.Button("License, biases, and model changes",
                                    elem_id="license-btn")
        license_button.click(
            None,
            [],
            prompt,
            _js="""
                    () => {
                        var appDom = document.querySelector("body > gradio-app");
                        var options = appDom.querySelector("#license-display")
                        if (options == null) {options = appDom.shadowRoot.querySelector("#license-display")}
                        options.style.display = ["none", ""].includes(options.style.display) ? "flex" : "none";
                    }""",
        )
        with gr.Row(elem_id="license-display"):
            gr.HTML(
                """
                    <div class="acknowledgments">
                        <p><h4>LICENSE</h4>
    The model is licensed with a <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license" style="text-decoration: underline;" target="_blank">CreativeML Open RAIL-M</a> license. The authors claim no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in this license. The license forbids you from sharing any content that violates any laws, produce any harm to a person, disseminate any personal information that would be meant for harm, spread misinformation and target vulnerable groups. For the full list of restrictions please <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license" target="_blank" style="text-decoration: underline;" target="_blank">read the license</a></p>
                        <p><h4>Biases and content acknowledgment</h4>
    Despite how impressive being able to turn text into image is, beware to the fact that this model may output content that reinforces or exacerbates societal biases, as well as realistic faces, pornography and violence. The model was trained on the <a href="https://laion.ai/blog/laion-5b/" style="text-decoration: underline;" target="_blank">LAION-5B dataset</a>, which scraped non-curated image-text-pairs from the internet (the exception being the removal of illegal content) and is meant for research purposes. You can read more in the <a href="https://huggingface.co/CompVis/stable-diffusion-v1-4" style="text-decoration: underline;" target="_blank">model card</a></p>
    <p><h4>Model Changes</h4>
    The model used in this Space alters the underlying <a href="https://huggingface.co/CompVis/stable-diffusion-v1-4" style="text-decoration: underline;" target="_blank">stable-diffusion-v1-4</a> model through the addition of new embedding vectors in order to capture the likeness of the <a href="https://www.determined.ai" style="text-decoration: underline;" target="_blank">Determined AI</a> logo.</p>
                   </div>
               """
            )
        gr.HTML(
            """
            <div class="footer">
                    <p>Underlying model by <a href="https://huggingface.co/CompVis" style="text-decoration: underline;" target="_blank">CompVis</a> and <a href="https://huggingface.co/stabilityai" style="text-decoration: underline;" target="_blank">Stability AI</a> - Gradio code based on the <a href="https://huggingface.co/spaces/stabilityai/stable-diffusion" style="text-decoration: underline;" target="_blank">Stability AI Demo</a>
                    </p>
                </div>
           """
        )


block.queue(max_size=10).launch(show_error=True)