File size: 10,040 Bytes
6f58cbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import json
import random
import time
from datetime import datetime
import os
import requests
from datasets import load_dataset
from time import sleep


TEMPLATE_JSON=json.loads("""
{
    "resource_spans": [
      {
        "scope_spans": [
          {
            "spans": [
              {
                "trace_id": "NQ01459b3A+aAHE+JwGWNQ==",
                "end_time_unix_nano": "1725721375827041000",
                "span_id": "0PCGpTowmVo=",
                "kind": "SPAN_KIND_CLIENT",
                "name": "openai.chat",
                "start_time_unix_nano": "1725721375188928425",
                "attributes": [
                  {
                    "value": {
                      "string_value": "chat"
                    },
                    "key": "llm.request.type"
                  },
                  {
                    "value": {
                      "string_value": "OpenAI"
                    },
                    "key": "llm.vendor"
                  },
                  {
                    "value": {
                      "string_value": "gpt-3.5-turbo"
                    },
                    "key": "llm.request.model"
                  },
                  {
                    "value": {
                      "int_value": "100"
                    },
                    "key": "llm.request.max_tokens"
                  },
                  {
                    "value": {
                      "double_value": 0.5
                    },
                    "key": "llm.temperature"
                  },
                  {
                    "value": {
                      "string_value": "None"
                    },
                    "key": "llm.headers"
                  },
                  {
                    "value": {
                      "string_value": "system"
                    },
                    "key": "llm.prompts.0.role"
                  },
                  {
                    "value": {
                      "string_value": "You are Responsible AI assistant to the user. "
                    },
                    "key": "llm.prompts.0.content"
                  },
                  {
                    "value": {
                      "string_value": "user"
                    },
                    "key": "llm.prompts.1.role"
                  },
                  {
                    "value": {
                      "string_value": "hello this my test message"
                    },
                    "key": "llm.prompts.1.content"
                  },
                  {
                    "value": {
                      "string_value": "gpt-3.5-turbo-0125"
                    },
                    "key": "llm.response.model"
                  },
                  {
                    "value": {
                      "int_value": "35"
                    },
                    "key": "llm.usage.total_tokens"
                  },
                  {
                    "value": {
                      "int_value": "9"
                    },
                    "key": "llm.usage.completion_tokens"
                  },
                  {
                    "value": {
                      "int_value": "26"
                    },
                    "key": "llm.usage.prompt_tokens"
                  },
                  {
                    "value": {
                      "string_value": "stop"
                    },
                    "key": "llm.completions.0.finish_reason"
                  },
                  {
                    "value": {
                      "string_value": "assistant"
                    },
                    "key": "llm.completions.0.role"
                  },
                  {
                    "value": {
                      "string_value": "Hello! How can I assist you today?"
                    },
                    "key": "llm.completions.0.content"
                  }
                ],
                "status": {}
              }
            ],
            "scope": {
              "name": "opentelemetry.instrumentation.openai.v1",
              "version": "0.10.4"
            }
          }
        ],
        "resource": {
          "attributes": [
            {
              "value": {
                "string_value": "llm-chat-app"
              },
              "key": "service.name"
            }
          ]
        }
      }
    ]
}

""")


def generate_random_id(size):
    return ''.join(random.choices('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=', k=size))


def generate_json_from_template(template, provider, model, service_name, message):    
    # Generate random trace_id and span_id
    trace_id = generate_random_id(22)
    span_id = generate_random_id(12)
    
    # Get current time in nanoseconds
    current_time_ns = int(time.time() * 1e9)
    
    # Update trace_id, span_id, times, provider, model, and service_name
    template['resource_spans'][0]['scope_spans'][0]['spans'][0]['trace_id'] = trace_id
    template['resource_spans'][0]['scope_spans'][0]['spans'][0]['span_id'] = span_id
    template['resource_spans'][0]['scope_spans'][0]['spans'][0]['start_time_unix_nano'] = str(current_time_ns)
    template['resource_spans'][0]['scope_spans'][0]['spans'][0]['end_time_unix_nano'] = str(current_time_ns + random.randint(100000000, 1000000000))  # Random duration

    # Update provider, model, and service_name information in attributes
    for attr in template['resource_spans'][0]['scope_spans'][0]['spans'][0]['attributes']:
        if attr['key'] == 'llm.vendor':
            attr['value']['string_value'] = provider
        elif attr['key'] == 'llm.request.model':
            attr['value']['string_value'] = model
        elif attr['key'] == 'llm.prompts.1.content':  # Update user message content
            attr['value']['string_value'] = message

    # Update service_name in the resource attributes
    for attr in template['resource_spans'][0]['resource']['attributes']:
        if attr['key'] == 'service.name':
            attr['value']['string_value'] = service_name

    # Return the modified JSON
    return json.dumps(template)


def send_json_to_remote(json_data):
    # Get environment variables
    base_url = os.getenv('TRACELOOP_BASE_URL')
    api_key = os.getenv('TRACELOOP_API_KEY')
    
    if not base_url or not api_key:
        raise EnvironmentError("TRACELOOP_BASE_URL or TRACELOOP_API_KEY is not set in environment variables.")

    # Set the headers and URL
    url = f"{base_url}/v1/traces"
    headers = {
        'Content-Type': 'application/json',
        'Authorization': f"Bearer {api_key}"
    }

    # Send the POST request
    response = requests.post(url, headers=headers, data=json_data)

    # Check the response status
    if response.status_code == 200:
        print("Data successfully sent!")
    else:
        print(f"Failed to send data. Status Code: {response.status_code}, Response: {response.text}")
    return (response.status_code, response.text)

def send_message(message):
    _apps = ["fintechgpt", "healthgpt", "mydoc", "knowledge-centre", "assistantgpt"]

    # Compute exponential weights for service names
    factor = 2  # Control the steepness of the exponential decrease
    app_weights = [factor ** -i for i in range(len(_apps))]

    # Select a service_name randomly based on the exponential weights
    service_name = random.choices(_apps, weights=app_weights, k=1)[0]

    # Define providers and corresponding models with weights
    providers_models = {
        "Meta AI": (["LLaMA 65B", "LLaMA 33B"], 10),
        "Mistral": (["Mistral 7B"], 8),
        "Anthropic": (["Claude 3.5 Sonnet"], 15),
        "OpenAI": (["GPT-3", "GPT-3.5", "GPT-4", "GPT-4o"], 25),
        "Google": (["Gemini Ultra", "Gemini Pro", "Gemini Nano", "Lamda", "Palm"], 20),
        "Databricks": (["Dolly"], 5),
        "IBM AI": (["Watson NLP"], 5),
        "Azure AI": (["Azure OpenAI", "Custom GPT-3.5"], 7),
        "Snowflake": (["Snowflake GPT"], 3),
        "Krutrim": (["Krutrim LLM"], 2),
        "Baidu": (["Ernie 4.0"], 10),
        "Stability AI": (["StableLM 3B", "StableLM 7B"], 4),
        "Microsoft": (["Orca", "Phi-1"], 8)
    }

    # Extract providers and their weights
    providers = list(providers_models.keys())
    provider_weights = [providers_models[provider][1] for provider in providers]

    # Randomly select a provider based on weights
    selected_provider = random.choices(providers, weights=provider_weights, k=1)[0]

    # Randomly select a model from the selected provider
    selected_model = random.choice(providers_models[selected_provider][0])

    # Generate the JSON with the selected provider, model, and service_name
    output_json = generate_json_from_template(TEMPLATE_JSON,  selected_provider, selected_model, service_name, message)

    # Send the JSON to the remote server
    return send_json_to_remote(output_json)


def main():
    prompt_injection_dataset = load_dataset("deepset/prompt-injections")
    toxicity_prompts = load_dataset("allenai/real-toxicity-prompts")

    for i in range(2):
        # Collect messages
        prompt_injection_sample = prompt_injection_dataset["train"].shuffle(seed=42).select(range(10))
        toxicity_sample = toxicity_prompts["train"].shuffle(seed=42).select(range(10))
        plain_messages = ["this is test conversation" for _ in range(10)]

        # Combine all messages into a single list
        all_messages = [msg["text"] for msg in prompt_injection_sample] + \
                       [msg["prompt"]["text"] for msg in toxicity_sample] + \
                       plain_messages

        # Shuffle the combined list to mix message types
        random.shuffle(all_messages)

        # Send each message
        for message in all_messages:
            print(f"Sending Message {message}")
            send_message(message)
            sleep(random.uniform(2, 4))  # Random sleep between 0.5 to 2 seconds

if __name__ == "__main__":
    main()