Spaces:
Running
Running
File size: 10,040 Bytes
6f58cbf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import json
import random
import time
from datetime import datetime
import os
import requests
from datasets import load_dataset
from time import sleep
TEMPLATE_JSON=json.loads("""
{
"resource_spans": [
{
"scope_spans": [
{
"spans": [
{
"trace_id": "NQ01459b3A+aAHE+JwGWNQ==",
"end_time_unix_nano": "1725721375827041000",
"span_id": "0PCGpTowmVo=",
"kind": "SPAN_KIND_CLIENT",
"name": "openai.chat",
"start_time_unix_nano": "1725721375188928425",
"attributes": [
{
"value": {
"string_value": "chat"
},
"key": "llm.request.type"
},
{
"value": {
"string_value": "OpenAI"
},
"key": "llm.vendor"
},
{
"value": {
"string_value": "gpt-3.5-turbo"
},
"key": "llm.request.model"
},
{
"value": {
"int_value": "100"
},
"key": "llm.request.max_tokens"
},
{
"value": {
"double_value": 0.5
},
"key": "llm.temperature"
},
{
"value": {
"string_value": "None"
},
"key": "llm.headers"
},
{
"value": {
"string_value": "system"
},
"key": "llm.prompts.0.role"
},
{
"value": {
"string_value": "You are Responsible AI assistant to the user. "
},
"key": "llm.prompts.0.content"
},
{
"value": {
"string_value": "user"
},
"key": "llm.prompts.1.role"
},
{
"value": {
"string_value": "hello this my test message"
},
"key": "llm.prompts.1.content"
},
{
"value": {
"string_value": "gpt-3.5-turbo-0125"
},
"key": "llm.response.model"
},
{
"value": {
"int_value": "35"
},
"key": "llm.usage.total_tokens"
},
{
"value": {
"int_value": "9"
},
"key": "llm.usage.completion_tokens"
},
{
"value": {
"int_value": "26"
},
"key": "llm.usage.prompt_tokens"
},
{
"value": {
"string_value": "stop"
},
"key": "llm.completions.0.finish_reason"
},
{
"value": {
"string_value": "assistant"
},
"key": "llm.completions.0.role"
},
{
"value": {
"string_value": "Hello! How can I assist you today?"
},
"key": "llm.completions.0.content"
}
],
"status": {}
}
],
"scope": {
"name": "opentelemetry.instrumentation.openai.v1",
"version": "0.10.4"
}
}
],
"resource": {
"attributes": [
{
"value": {
"string_value": "llm-chat-app"
},
"key": "service.name"
}
]
}
}
]
}
""")
def generate_random_id(size):
return ''.join(random.choices('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=', k=size))
def generate_json_from_template(template, provider, model, service_name, message):
# Generate random trace_id and span_id
trace_id = generate_random_id(22)
span_id = generate_random_id(12)
# Get current time in nanoseconds
current_time_ns = int(time.time() * 1e9)
# Update trace_id, span_id, times, provider, model, and service_name
template['resource_spans'][0]['scope_spans'][0]['spans'][0]['trace_id'] = trace_id
template['resource_spans'][0]['scope_spans'][0]['spans'][0]['span_id'] = span_id
template['resource_spans'][0]['scope_spans'][0]['spans'][0]['start_time_unix_nano'] = str(current_time_ns)
template['resource_spans'][0]['scope_spans'][0]['spans'][0]['end_time_unix_nano'] = str(current_time_ns + random.randint(100000000, 1000000000)) # Random duration
# Update provider, model, and service_name information in attributes
for attr in template['resource_spans'][0]['scope_spans'][0]['spans'][0]['attributes']:
if attr['key'] == 'llm.vendor':
attr['value']['string_value'] = provider
elif attr['key'] == 'llm.request.model':
attr['value']['string_value'] = model
elif attr['key'] == 'llm.prompts.1.content': # Update user message content
attr['value']['string_value'] = message
# Update service_name in the resource attributes
for attr in template['resource_spans'][0]['resource']['attributes']:
if attr['key'] == 'service.name':
attr['value']['string_value'] = service_name
# Return the modified JSON
return json.dumps(template)
def send_json_to_remote(json_data):
# Get environment variables
base_url = os.getenv('TRACELOOP_BASE_URL')
api_key = os.getenv('TRACELOOP_API_KEY')
if not base_url or not api_key:
raise EnvironmentError("TRACELOOP_BASE_URL or TRACELOOP_API_KEY is not set in environment variables.")
# Set the headers and URL
url = f"{base_url}/v1/traces"
headers = {
'Content-Type': 'application/json',
'Authorization': f"Bearer {api_key}"
}
# Send the POST request
response = requests.post(url, headers=headers, data=json_data)
# Check the response status
if response.status_code == 200:
print("Data successfully sent!")
else:
print(f"Failed to send data. Status Code: {response.status_code}, Response: {response.text}")
return (response.status_code, response.text)
def send_message(message):
_apps = ["fintechgpt", "healthgpt", "mydoc", "knowledge-centre", "assistantgpt"]
# Compute exponential weights for service names
factor = 2 # Control the steepness of the exponential decrease
app_weights = [factor ** -i for i in range(len(_apps))]
# Select a service_name randomly based on the exponential weights
service_name = random.choices(_apps, weights=app_weights, k=1)[0]
# Define providers and corresponding models with weights
providers_models = {
"Meta AI": (["LLaMA 65B", "LLaMA 33B"], 10),
"Mistral": (["Mistral 7B"], 8),
"Anthropic": (["Claude 3.5 Sonnet"], 15),
"OpenAI": (["GPT-3", "GPT-3.5", "GPT-4", "GPT-4o"], 25),
"Google": (["Gemini Ultra", "Gemini Pro", "Gemini Nano", "Lamda", "Palm"], 20),
"Databricks": (["Dolly"], 5),
"IBM AI": (["Watson NLP"], 5),
"Azure AI": (["Azure OpenAI", "Custom GPT-3.5"], 7),
"Snowflake": (["Snowflake GPT"], 3),
"Krutrim": (["Krutrim LLM"], 2),
"Baidu": (["Ernie 4.0"], 10),
"Stability AI": (["StableLM 3B", "StableLM 7B"], 4),
"Microsoft": (["Orca", "Phi-1"], 8)
}
# Extract providers and their weights
providers = list(providers_models.keys())
provider_weights = [providers_models[provider][1] for provider in providers]
# Randomly select a provider based on weights
selected_provider = random.choices(providers, weights=provider_weights, k=1)[0]
# Randomly select a model from the selected provider
selected_model = random.choice(providers_models[selected_provider][0])
# Generate the JSON with the selected provider, model, and service_name
output_json = generate_json_from_template(TEMPLATE_JSON, selected_provider, selected_model, service_name, message)
# Send the JSON to the remote server
return send_json_to_remote(output_json)
def main():
prompt_injection_dataset = load_dataset("deepset/prompt-injections")
toxicity_prompts = load_dataset("allenai/real-toxicity-prompts")
for i in range(2):
# Collect messages
prompt_injection_sample = prompt_injection_dataset["train"].shuffle(seed=42).select(range(10))
toxicity_sample = toxicity_prompts["train"].shuffle(seed=42).select(range(10))
plain_messages = ["this is test conversation" for _ in range(10)]
# Combine all messages into a single list
all_messages = [msg["text"] for msg in prompt_injection_sample] + \
[msg["prompt"]["text"] for msg in toxicity_sample] + \
plain_messages
# Shuffle the combined list to mix message types
random.shuffle(all_messages)
# Send each message
for message in all_messages:
print(f"Sending Message {message}")
send_message(message)
sleep(random.uniform(2, 4)) # Random sleep between 0.5 to 2 seconds
if __name__ == "__main__":
main()
|