Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
from PIL import Image
|
4 |
+
from PIL import UnidentifiedImageError
|
5 |
+
|
6 |
+
def sign_classifier(input_image):
|
7 |
+
try:
|
8 |
+
# Load the image
|
9 |
+
image = input_image
|
10 |
+
|
11 |
+
# Emotion classifier
|
12 |
+
sign_pipe = pipeline("image-classification", model="Marxulia/asl_aplhabet_img_classifier_v3")
|
13 |
+
sign_result = sign_pipe(image)
|
14 |
+
predicted_sign = sign_result[0]['label']
|
15 |
+
sign_confidence = sign_result[0]['score']
|
16 |
+
|
17 |
+
# Format the results
|
18 |
+
sign_output = f"Sign Prediction: {predicted_sign}\nConfidence: {sign_confidence}"
|
19 |
+
|
20 |
+
return sign_output
|
21 |
+
|
22 |
+
except UnidentifiedImageError:
|
23 |
+
return "Error: Invalid input image format."
|
24 |
+
|
25 |
+
# Load an example image (replace 'path/to/your/image.jpg' with your actual path)
|
26 |
+
example_image1 = Image.open('H3.jpg')
|
27 |
+
example_image2 = Image.open('B3.jpg')
|
28 |
+
|
29 |
+
# Create Gradio interface
|
30 |
+
input_image = gr.Image(type="pil", label="Upload Image")
|
31 |
+
output_sign = gr.Textbox(label="Sign Classifier")
|
32 |
+
|
33 |
+
# Provide a list of examples, where each element is a list with the input and output
|
34 |
+
examples = [[example_image1, "H Sign"],[example_image2, "B Sign"]] # Modify the output based on your image
|
35 |
+
|
36 |
+
# Include examples in the interface
|
37 |
+
interface = gr.Interface(fn=sign_classifier, inputs=input_image, outputs=[output_sign],
|
38 |
+
title="Image Classifier", description="Upload an image and translate the sign", examples=examples)
|
39 |
+
|
40 |
+
interface.launch(debug=True)
|