Spaces:
Sleeping
Sleeping
File size: 1,396 Bytes
585ffb3 5e361d7 585ffb3 5e361d7 585ffb3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
import subprocess
import sys
def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
install("keybert")
install("keyphrase_vectorizers")
import warnings
from keybert import KeyBERT
from keyphrase_vectorizers import KeyphraseCountVectorizer
import gradio as gr
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=UserWarning)
embedding = 'all-mpnet-base-v2'
key_model = KeyBERT(model=embedding)
vectorizer_params = KeyphraseCountVectorizer(spacy_pipeline='en_core_web_sm', pos_pattern='<J.*>*<N.*>+', stop_words='english', lowercase=True)
def get_keywords(course_name, course_desc):
keywords_list = []
course_name, course_desc = course_name.strip().lower(), course_desc.strip().lower()
data = course_name+". "+course_desc
keywords = key_model.extract_keywords(data, vectorizer=vectorizer_params, stop_words='english', top_n=7, use_mmr=True)
keywords_list = list(dict(keywords).keys())
return ", ".join(keywords_list)
iface = gr.Interface(fn=get_keywords, inputs=[gr.Textbox(label="Course Name"), gr.Textbox(label="Course Description")], outputs=gr.Textbox(label="Relevant Tags"),
title="College Course Tags Generator", description="Generating tags/keywords based on Keyphrase-BERT Extraction'")
iface.launch() |