Spaces:
Sleeping
Sleeping
File size: 1,487 Bytes
02e73ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
import torch
import gradio as gr
from transformers import pipeline
def food_not_food_classifier(text):
# Set up text classification pipeline
food_not_food_classifier = pipeline(task="text-classification",
model="mrdbourke/learn_hf_food_not_food_text_classifier-distilbert-base-uncased",
device="cuda" if torch.cuda.is_available() else "cpu",
top_k=None) # return all possible scores (not just top-1)
# Get outputs from pipeline (as a list of dicts)
outputs = food_not_food_classifier(text)[0]
# Format output for Gradio (e.g. {"label_1": probability_1, "label_2": probability_2})
output_dict = {}
for item in outputs:
output_dict[item["label"]] = item["score"]
return output_dict
description = """
A text classifier to determine if a sentence is about food or not food.
TK - See source code:
"""
demo = gr.Interface(fn=food_not_food_classifier,
inputs="text",
outputs=gr.Label(num_top_classes=2), # show top 2 classes (that's all we have)
title="🍗🚫🥑 Food or Not Food Text Classifier",
description=description,
examples=[["I whipped up a fresh batch of code, but it seems to have a syntax error."],
["A delicious photo of a plate of scrambled eggs, bacon and toast."]])
if __name__ == "__main__":
demo.launch()
|