Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -10,7 +10,7 @@ def food_not_food_classifier(text: str) -> Dict[str, float]:
|
|
10 |
# Set up text classification pipeline
|
11 |
food_not_food_classifier = pipeline(task="text-classification",
|
12 |
# Because our model is on Hugging Face already, we can pass in the model name directly
|
13 |
-
model="
|
14 |
device="cuda" if torch.cuda.is_available() else "cpu",
|
15 |
top_k=None) # return all possible scores (not just top-1)
|
16 |
|
@@ -36,10 +36,10 @@ See [source code](https://github.com/mrdbourke/learn-huggingface/blob/main/noteb
|
|
36 |
demo = gr.Interface(fn=food_not_food_classifier,
|
37 |
inputs="text",
|
38 |
outputs=gr.Label(num_top_classes=2), # show top 2 classes (that's all we have)
|
39 |
-
title="
|
40 |
description=description,
|
41 |
-
examples=[["
|
42 |
-
["
|
43 |
|
44 |
# 4. Launch the interface
|
45 |
if __name__ == "__main__":
|
|
|
10 |
# Set up text classification pipeline
|
11 |
food_not_food_classifier = pipeline(task="text-classification",
|
12 |
# Because our model is on Hugging Face already, we can pass in the model name directly
|
13 |
+
model="devagonal/bert-f1-durga-muhammad", # link to model on HF Hub
|
14 |
device="cuda" if torch.cuda.is_available() else "cpu",
|
15 |
top_k=None) # return all possible scores (not just top-1)
|
16 |
|
|
|
36 |
demo = gr.Interface(fn=food_not_food_classifier,
|
37 |
inputs="text",
|
38 |
outputs=gr.Label(num_top_classes=2), # show top 2 classes (that's all we have)
|
39 |
+
title="Bert F1 Durga Muhammad",
|
40 |
description=description,
|
41 |
+
examples=[["siapakah durga"],
|
42 |
+
["siapakah muhammad"]])
|
43 |
|
44 |
# 4. Launch the interface
|
45 |
if __name__ == "__main__":
|