Created app
Browse files- README.md +6 -6
- app.py +193 -0
- gitattributes +35 -0
- requirements.txt +4 -0
README.md
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
-
|
|
|
1 |
---
|
2 |
+
title: Operative Iq
|
3 |
+
emoji: 💬
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: purple
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.36.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
+
An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
|
app.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import boto3
|
3 |
+
import gradio as gr
|
4 |
+
import math
|
5 |
+
import json
|
6 |
+
import time
|
7 |
+
import re
|
8 |
+
from botocore.client import Config
|
9 |
+
|
10 |
+
kb_id = os.getenv('KNOWLEDGE_BASE_ID')
|
11 |
+
aws_access_key = os.getenv('AWS_ACCESS_KEY_ID')
|
12 |
+
aws_secret_key = os.getenv('AWS_SECRET_ACCESS_KEY')
|
13 |
+
region = os.getenv('AWS_REGION')
|
14 |
+
initial_message = os.getenv('INITIAL_MESSAGE')
|
15 |
+
|
16 |
+
amazon_model_id = "amazon.titan-text-premier-v1:0"
|
17 |
+
|
18 |
+
bedrock_config = Config(connect_timeout=120, read_timeout=120, retries={'max_attempts': 0})
|
19 |
+
bedrock_client = boto3.client(
|
20 |
+
'bedrock-runtime',
|
21 |
+
region_name=region,
|
22 |
+
aws_access_key_id=aws_access_key,
|
23 |
+
aws_secret_access_key=aws_secret_key
|
24 |
+
)
|
25 |
+
bedrock_agent_client = boto3.client(
|
26 |
+
"bedrock-agent-runtime",
|
27 |
+
config=bedrock_config,
|
28 |
+
region_name=region,
|
29 |
+
aws_access_key_id=aws_access_key,
|
30 |
+
aws_secret_access_key=aws_secret_key
|
31 |
+
)
|
32 |
+
|
33 |
+
def retrieve(query, numberOfResults=4):
|
34 |
+
start_time = time.time()
|
35 |
+
response = bedrock_agent_client.retrieve(
|
36 |
+
retrievalQuery= {
|
37 |
+
'text': query
|
38 |
+
},
|
39 |
+
knowledgeBaseId=kb_id,
|
40 |
+
retrievalConfiguration= {
|
41 |
+
'vectorSearchConfiguration': {
|
42 |
+
'numberOfResults': numberOfResults,
|
43 |
+
'overrideSearchType': "SEMANTIC", #"HYBRID",
|
44 |
+
}
|
45 |
+
}
|
46 |
+
)
|
47 |
+
end_time = time.time()
|
48 |
+
retrieve_execution_time = end_time - start_time
|
49 |
+
|
50 |
+
return response['retrievalResults'], retrieve_execution_time
|
51 |
+
|
52 |
+
def get_contexts(retrievalResults):
|
53 |
+
contexts = ""
|
54 |
+
for retrievedResult in retrievalResults:
|
55 |
+
contexts += retrievedResult['content']['text'] + '\n'
|
56 |
+
return contexts
|
57 |
+
|
58 |
+
def remove_link(text):
|
59 |
+
pattern = r"\n\nFor more information, follow the link provided: https:\/\/knowledge\.operativeiq\.com\/articles\/\d{9}"
|
60 |
+
cleaned_text = re.sub(pattern, '', text)
|
61 |
+
return cleaned_text
|
62 |
+
|
63 |
+
def get_answer(query, history, temperature, top_p, max_token_count):
|
64 |
+
history = remove_link(history)
|
65 |
+
contexts = ""
|
66 |
+
article_url_text = ""
|
67 |
+
max_words = math.floor(max_token_count*0.75)
|
68 |
+
|
69 |
+
retrievalResults, retrieve_execution_time = retrieve(query)
|
70 |
+
highest_score = retrievalResults[0]['score']
|
71 |
+
|
72 |
+
if highest_score > 0.45:
|
73 |
+
contexts = get_contexts(retrievalResults)
|
74 |
+
article_url = f"https://knowledge.operativeiq.com/articles/{retrievalResults[0]['metadata'].get('article_id')}"
|
75 |
+
article_url_text = f"\n\nFor more information, follow the link provided: {article_url}"
|
76 |
+
|
77 |
+
PROMPT_TEMPLATE = f"""
|
78 |
+
System: You are an intelligent assistant helping users understand and navigate website functionalities.
|
79 |
+
Your goal is to provide clear, accurate, and contextually relevant answers based on the information provided.
|
80 |
+
|
81 |
+
Use the information enclosed in the <context> tags and refer to the conversation history in the <history> tags to answer the user's question in the <question> tags.
|
82 |
+
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
83 |
+
|
84 |
+
Your response must:
|
85 |
+
- Be fully formed and grammatically correct without cutting off any sentences.
|
86 |
+
- Complete a logical thought or sentence before stopping, ensuring the response doesn't end mid-sentence.
|
87 |
+
- Be clear, easy to understand, and succinct, not exceeding {max_words} words.
|
88 |
+
- Refer specifically to website features or actions when relevant to the user's question.
|
89 |
+
- Avoid providing URL links or external references.
|
90 |
+
|
91 |
+
<history>
|
92 |
+
{history}
|
93 |
+
</history>
|
94 |
+
|
95 |
+
<context>
|
96 |
+
{contexts}
|
97 |
+
</context>
|
98 |
+
|
99 |
+
<question>
|
100 |
+
{query}
|
101 |
+
</question>
|
102 |
+
|
103 |
+
Provide a detailed, concise response that fully answers the user's question.
|
104 |
+
Make sure all sentences of your reponse are completely formed and grammatically correct.
|
105 |
+
If necessary, reduce the amount of detail provided to keep the response within the word limit but still complete.
|
106 |
+
|
107 |
+
Assistant:
|
108 |
+
"""
|
109 |
+
|
110 |
+
body = json.dumps({
|
111 |
+
"inputText": PROMPT_TEMPLATE,
|
112 |
+
"textGenerationConfig": {
|
113 |
+
"maxTokenCount": max_token_count,
|
114 |
+
"temperature": temperature,
|
115 |
+
"topP": top_p
|
116 |
+
}
|
117 |
+
})
|
118 |
+
|
119 |
+
kwargs = {
|
120 |
+
"modelId": "amazon.titan-text-premier-v1:0",
|
121 |
+
"contentType": "application/json",
|
122 |
+
"accept": "*/*",
|
123 |
+
"body": body
|
124 |
+
}
|
125 |
+
|
126 |
+
start_time = time.time()
|
127 |
+
|
128 |
+
response = bedrock_client.invoke_model(**kwargs)
|
129 |
+
|
130 |
+
end_time = time.time()
|
131 |
+
invoke_model_time = end_time - start_time
|
132 |
+
|
133 |
+
response_body = json.loads(response.get('body').read())
|
134 |
+
response_text = response_body['results'][0]['outputText']
|
135 |
+
|
136 |
+
response_text += article_url_text
|
137 |
+
|
138 |
+
prompt_and_time = f"""
|
139 |
+
Prompt:
|
140 |
+
{PROMPT_TEMPLATE}
|
141 |
+
|
142 |
+
Retrieve execution time: {retrieve_execution_time} seconds
|
143 |
+
Invoke model execution time: {invoke_model_time} seconds
|
144 |
+
"""
|
145 |
+
return response_text, prompt_and_time
|
146 |
+
|
147 |
+
def format_chat_history(chat_history):
|
148 |
+
prompt = ""
|
149 |
+
for turn in chat_history:
|
150 |
+
user_message, bot_message = turn
|
151 |
+
prompt = f"{prompt}User: {user_message}\nAssistant: {bot_message}\n"
|
152 |
+
return prompt
|
153 |
+
|
154 |
+
def respond(message, chat_history, temperature=0.9, top_p=0.6, max_token_count=512):
|
155 |
+
formatted_history = format_chat_history(chat_history)
|
156 |
+
chat_history.append([message, ""])
|
157 |
+
|
158 |
+
stream, prompt_and_time = get_answer(message, formatted_history, temperature, top_p, max_token_count)
|
159 |
+
|
160 |
+
for idx, text_token in enumerate(stream):
|
161 |
+
if idx == 0 and text_token.startswith(" "):
|
162 |
+
text_token = text_token[1:]
|
163 |
+
|
164 |
+
chat_history[-1][1] += text_token
|
165 |
+
yield "", chat_history, prompt_and_time
|
166 |
+
|
167 |
+
def clear_chat_history():
|
168 |
+
return '', []
|
169 |
+
|
170 |
+
def main():
|
171 |
+
with gr.Blocks() as demo:
|
172 |
+
chatbot = gr.Chatbot([[None, initial_message]], height=550)
|
173 |
+
|
174 |
+
msg = gr.Textbox(label="Question")
|
175 |
+
|
176 |
+
with gr.Accordion(label="Advanced options", open=False):
|
177 |
+
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=1, value=0.6, step=0.1)
|
178 |
+
top_p = gr.Slider(label="Top P", minimum=0.1, maximum=1, value=0.5, step=0.1)
|
179 |
+
max_token_count = gr.Slider(label="Max token count", minimum=1, maximum=1024, value=400, step=10)
|
180 |
+
prompt_and_time = gr.Textbox(label="Prompt and Time", interactive=False)
|
181 |
+
|
182 |
+
btn = gr.Button("Submit")
|
183 |
+
clear = gr.Button("Clear console")
|
184 |
+
|
185 |
+
btn.click(respond, inputs=[msg, chatbot, temperature, top_p, max_token_count], outputs=[msg, chatbot, prompt_and_time])
|
186 |
+
msg.submit(respond, inputs=[msg, chatbot, temperature, top_p, max_token_count], outputs=[msg, chatbot, prompt_and_time])
|
187 |
+
|
188 |
+
clear.click(clear_chat_history, outputs=[msg, chatbot, prompt_and_time])
|
189 |
+
|
190 |
+
demo.queue().launch()
|
191 |
+
|
192 |
+
if __name__ == "__main__":
|
193 |
+
main()
|
gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
huggingface_hub==0.22.2
|
2 |
+
boto3==1.34.161
|
3 |
+
gradio==4.41.0
|
4 |
+
botocore==1.34.161
|