Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import MobileNetV2FeatureExtractor, MobileNetV2ForImageClassification
|
2 |
+
from PIL import Image
|
3 |
+
|
4 |
+
# Replace with the path to the directory containing the model files
|
5 |
+
model_folder = "/path/to/your/model_folder"
|
6 |
+
|
7 |
+
# Load the feature extractor
|
8 |
+
feature_extractor = MobileNetV2FeatureExtractor.from_pretrained(model_folder)
|
9 |
+
|
10 |
+
# Load the model
|
11 |
+
model = MobileNetV2ForImageClassification.from_pretrained(model_folder)
|
12 |
+
|
13 |
+
# Load the image
|
14 |
+
image = Image.open("/path/to/your/image.jpg")
|
15 |
+
|
16 |
+
# Preprocess the image
|
17 |
+
inputs = feature_extractor(images=image, return_tensors="pt")
|
18 |
+
|
19 |
+
# Make predictions
|
20 |
+
outputs = model(**inputs)
|
21 |
+
logits = outputs.logits
|
22 |
+
|
23 |
+
# Model predicts one of the 1000 ImageNet classes
|
24 |
+
predicted_class_idx = logits.argmax(-1).item()
|
25 |
+
print("Predicted class:", model.config.id2label[predicted_class_idx])
|