Update app.py
Browse files
app.py
CHANGED
@@ -1,28 +1,20 @@
|
|
1 |
-
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
inputs
|
21 |
-
|
22 |
-
# Make predictions
|
23 |
-
outputs = model(**inputs)
|
24 |
-
logits = outputs.logits
|
25 |
-
|
26 |
-
# Model predicts one of the 1000 ImageNet classes
|
27 |
-
predicted_class_idx = logits.argmax(-1).item()
|
28 |
-
print("Predicted class:", model.config.id2label[predicted_class_idx])
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from fastai.vision.all import *
|
3 |
+
import skimage
|
4 |
+
|
5 |
+
learn = load_learner('export.pkl')
|
6 |
+
|
7 |
+
labels = learn.dls.vocab
|
8 |
+
def predict(img):
|
9 |
+
img = PILImage.create(img)
|
10 |
+
pred,pred_idx,probs = learn.predict(img)
|
11 |
+
return {labels[i]: float(probs[i]) for i in range(len(labels))}
|
12 |
+
|
13 |
+
title = "Kapu"
|
14 |
+
description = "An app for Chicken Disease Classisfication"
|
15 |
+
article="<p style='text-align: center'>The app identifies and classifies three chicken diseases: Coccidiosis, Salmonella, and Newcastle, aiding in effective disease management for poultry farming.</p>"
|
16 |
+
examples = ['test_image.jpg']
|
17 |
+
interpretation='default'
|
18 |
+
enable_queue=True
|
19 |
+
|
20 |
+
gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(512, 512)),outputs=gr.outputs.Label(num_top_classes=3),title=title,description=description,article=article,examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|