Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,49 +3,57 @@ from fastai.vision.all import *
|
|
3 |
import openai
|
4 |
import os
|
5 |
|
6 |
-
|
7 |
openai.api_key = os.getenv("OPENAI_API_KEY")
|
8 |
|
9 |
-
# Load
|
10 |
learn = load_learner('model.pkl')
|
11 |
|
12 |
-
# Define the labels
|
13 |
labels = learn.dls.vocab
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
# Define the prediction function
|
16 |
def predict(img):
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
#
|
39 |
-
|
40 |
-
|
41 |
-
# Define the Gradio interface
|
42 |
-
iface = gr.Interface(
|
43 |
-
fn=predict,
|
44 |
-
inputs=gr.Image(shape=(512, 512)),
|
45 |
-
outputs=[gr.Label(num_top_classes=3), gr.Textbox(label="GPT-3 Response")],
|
46 |
-
examples=examples,
|
47 |
-
enable_queue=True # This is optional and only necessary if you're hosting under heavy traffic
|
48 |
-
)
|
49 |
-
|
50 |
-
# Launch the Gradio app
|
51 |
-
iface.launch()
|
|
|
3 |
import openai
|
4 |
import os
|
5 |
|
|
|
6 |
openai.api_key = os.getenv("OPENAI_API_KEY")
|
7 |
|
8 |
+
# Load the model
|
9 |
learn = load_learner('model.pkl')
|
10 |
|
11 |
+
# Define the labels
|
12 |
labels = learn.dls.vocab
|
13 |
|
14 |
+
# Define a function for generating text
|
15 |
+
def generate_text(prompt):
|
16 |
+
response = openai.Completion.create(
|
17 |
+
engine="davinci",
|
18 |
+
prompt=prompt,
|
19 |
+
max_tokens=1024,
|
20 |
+
n=1,
|
21 |
+
stop=None,
|
22 |
+
temperature=0.7,
|
23 |
+
)
|
24 |
+
return response.choices[0].text.strip()
|
25 |
+
|
26 |
+
# Define a function to handle user queries
|
27 |
+
def handle_query(query, chat_history):
|
28 |
+
response = openai.ChatCompletion.create(
|
29 |
+
model="gpt-3.5-turbo",
|
30 |
+
messages=[{"role": "system", "content": "You are a helpful assistant you kow about plant Disease."},
|
31 |
+
{"role": "user", "content": query}] + chat_history
|
32 |
+
)
|
33 |
+
return response.choices[0].message['content']
|
34 |
+
|
35 |
# Define the prediction function
|
36 |
def predict(img):
|
37 |
+
img = PILImage.create(img)
|
38 |
+
pred,pred_idx,probs = learn.predict(img)
|
39 |
+
prediction = {labels[i]: float(probs[i]) for i in range(len(labels))}
|
40 |
+
chat_prompt = f"The model predicted {prediction}."
|
41 |
+
chat_response = generate_text(chat_prompt)
|
42 |
+
return {**prediction, 'chat_response': chat_response}
|
43 |
+
|
44 |
+
# Define the chat function
|
45 |
+
def chat(query, chat_history):
|
46 |
+
chat_response = handle_query(query, chat_history)
|
47 |
+
return chat_response
|
48 |
+
|
49 |
+
# Define the examples
|
50 |
+
examples = ['image.jpg']
|
51 |
+
|
52 |
+
# Define the interpretation
|
53 |
+
interpretation='default'
|
54 |
+
|
55 |
+
# Define the enable_queue
|
56 |
+
enable_queue=True
|
57 |
+
|
58 |
+
# Launch the interface
|
59 |
+
gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(512, 512)),outputs=gr.outputs.Label(num_top_classes=3),examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|