File size: 2,888 Bytes
f132af8
 
 
 
 
 
330da10
f132af8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c29b42f
 
 
f132af8
 
 
 
 
 
 
 
 
 
c29b42f
 
f132af8
 
 
 
 
c29b42f
 
 
f132af8
 
c29b42f
f132af8
 
 
 
40f1b54
f132af8
 
 
 
6cc7e67
f132af8
 
 
 
 
 
 
 
 
 
 
830a4c2
 
 
 
36c4050
 
830a4c2
 
36c4050
830a4c2
 
 
 
 
f132af8
c29b42f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import gradio as gr
import numpy as np
import onnxruntime
import cv2

# Declare ONNX session as a global variable
MODEL_PATH = "weights/Glint360K_R200_TopoFR_9784.onnx"
session = onnxruntime.InferenceSession(MODEL_PATH)

def pil_to_cv2(pil_image):
    # Convert PIL Image to CV2 format
    numpy_image = np.array(pil_image)
    # Convert RGB to BGR
    cv2_image = cv2.cvtColor(numpy_image, cv2.COLOR_RGB2BGR)
    return cv2_image

def process_image(pil_img):
    if pil_img is None:
        img = np.random.randint(0, 255, size=(112, 112, 3), dtype=np.uint8)
    else:
        # Convert PIL image to CV2
        img = pil_to_cv2(pil_img)
        img = cv2.resize(img, (112, 112))

    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    img = np.transpose(img, (2, 0, 1))
    img = img.astype(np.float32)
    img = np.expand_dims(img, axis=0)
    img = (img / 255.0 - 0.5) / 0.5
    return img

def calculate_similarity(img1, img2):
    # Image preprocessing
    img1_tensor = process_image(img1)
    img2_tensor = process_image(img2)
    
    # Extract features using ONNX model
    def get_features(img_tensor):
        input_name = session.get_inputs()[0].name
        features = session.run(None, {input_name: img_tensor})[0]
        return features
    
    # Extract features for each image
    feat1 = get_features(img1_tensor)
    feat2 = get_features(img2_tensor)
    
    # Normalize features (L2 normalization)
    feat1 = feat1 / np.linalg.norm(feat1, axis=1, keepdims=True)
    feat2 = feat2 / np.linalg.norm(feat2, axis=1, keepdims=True)
    
    # Calculate cosine similarity
    cosine_similarity = np.sum(feat1 * feat2, axis=1).item()
    return f"Cosine Similarity: {cosine_similarity:.4f}"

# Create Gradio interface with custom layout
with gr.Blocks() as iface:
    gr.Markdown("# Face Recognition with [TopoFR](https://github.com/DanJun6737/TopoFR)")
    gr.Markdown("Compare two faces to calculate their cosine similarity.")
    
    with gr.Row():
        img1_input = gr.Image(label="Reference Face", type="pil")
        img2_input = gr.Image(label="Other Face", type="pil")
    
    with gr.Row():
        similarity_output = gr.Text(label="Results")
    
    btn = gr.Button("Compare Faces")
    btn.click(
        fn=calculate_similarity,
        inputs=[img1_input, img2_input],
        outputs=similarity_output
    )

    # Add examples
    gr.Examples(
        examples=[
            ["examples/yong1.png", "examples/yong2.png"],
            ["examples/yong1.png", "examples/yong3.png"],
            ["examples/yong2.png", "examples/yong3.png"],
            ["examples/yong1.png", "examples/barboon.jpeg"],
            ["examples/yong2.png", "examples/barboon.jpeg"],
            ["examples/yong3.png", "examples/barboon.jpeg"],
        ],
        inputs=[img1_input, img2_input],
        label="Example Image Pairs"
    )

# Launch the interface
iface.launch()