Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
import albumentations as A
|
5 |
+
import random
|
6 |
+
|
7 |
+
def apply_augmentations(image, flip_h, flip_v, rotate, crop, gray, scale,
|
8 |
+
prob_flip_h, prob_flip_v, prob_rotate, prob_crop, prob_gray, prob_scale):
|
9 |
+
augmentations = []
|
10 |
+
|
11 |
+
if flip_h:
|
12 |
+
augmentations.append(A.HorizontalFlip(p=float(prob_flip_h)))
|
13 |
+
if flip_v:
|
14 |
+
augmentations.append(A.VerticalFlip(p=float(prob_flip_v)))
|
15 |
+
if rotate:
|
16 |
+
augmentations.append(A.Rotate(limit=90, p=float(prob_rotate)))
|
17 |
+
if crop:
|
18 |
+
augmentations.append(A.RandomResizedCrop(
|
19 |
+
size=(image.shape[0], image.shape[1]),
|
20 |
+
scale=(0.8, 1.0),
|
21 |
+
p=float(prob_crop)
|
22 |
+
))
|
23 |
+
if gray:
|
24 |
+
augmentations.append(A.ToGray(p=float(prob_gray)))
|
25 |
+
if scale:
|
26 |
+
scale_factor = random.uniform(0.8, 1.2)
|
27 |
+
augmentations.append(A.Resize(
|
28 |
+
height=int(image.shape[0] * scale_factor),
|
29 |
+
width=int(image.shape[1] * scale_factor),
|
30 |
+
p=float(prob_scale)
|
31 |
+
))
|
32 |
+
|
33 |
+
transform = A.Compose(augmentations)
|
34 |
+
|
35 |
+
# Generate 9 augmented images
|
36 |
+
augmented_images = []
|
37 |
+
for _ in range(9):
|
38 |
+
augmented = transform(image=image)
|
39 |
+
augmented_images.append(augmented['image'])
|
40 |
+
|
41 |
+
# Find maximum dimensions
|
42 |
+
max_height = max(img.shape[0] for img in augmented_images)
|
43 |
+
max_width = max(img.shape[1] for img in augmented_images)
|
44 |
+
|
45 |
+
# Add padding to all images
|
46 |
+
padded_images = []
|
47 |
+
for img in augmented_images:
|
48 |
+
h, w = img.shape[:2]
|
49 |
+
pad_top = (max_height - h) // 2
|
50 |
+
pad_bottom = max_height - h - pad_top
|
51 |
+
pad_left = (max_width - w) // 2
|
52 |
+
pad_right = max_width - w - pad_left
|
53 |
+
|
54 |
+
# Handle both RGB and grayscale images
|
55 |
+
if len(img.shape) == 3:
|
56 |
+
padded = cv2.copyMakeBorder(img, pad_top, pad_bottom, pad_left, pad_right,
|
57 |
+
cv2.BORDER_CONSTANT, value=[128, 128, 128])
|
58 |
+
else:
|
59 |
+
padded = cv2.copyMakeBorder(img, pad_top, pad_bottom, pad_left, pad_right,
|
60 |
+
cv2.BORDER_CONSTANT, value=[128])
|
61 |
+
padded_images.append(padded)
|
62 |
+
|
63 |
+
# Create a 3x3 grid
|
64 |
+
rows = []
|
65 |
+
for i in range(0, 9, 3):
|
66 |
+
row = np.hstack(padded_images[i:i+3])
|
67 |
+
rows.append(row)
|
68 |
+
grid = np.vstack(rows)
|
69 |
+
|
70 |
+
return grid
|
71 |
+
|
72 |
+
def main():
|
73 |
+
with gr.Blocks() as demo:
|
74 |
+
with gr.Row():
|
75 |
+
with gr.Column():
|
76 |
+
input_image = gr.Image(label="Input Image")
|
77 |
+
with gr.Column():
|
78 |
+
output_image = gr.Image(label="Output Image (3x3 Grid)")
|
79 |
+
|
80 |
+
with gr.Row():
|
81 |
+
with gr.Column():
|
82 |
+
flip_h = gr.Checkbox(label="Horizontal Flip")
|
83 |
+
prob_flip_h = gr.Slider(minimum=0, maximum=1, value=0.5, label="Probability")
|
84 |
+
|
85 |
+
with gr.Column():
|
86 |
+
flip_v = gr.Checkbox(label="Vertical Flip")
|
87 |
+
prob_flip_v = gr.Slider(minimum=0, maximum=1, value=0.5, label="Probability")
|
88 |
+
|
89 |
+
with gr.Column():
|
90 |
+
rotate = gr.Checkbox(label="Rotate")
|
91 |
+
prob_rotate = gr.Slider(minimum=0, maximum=1, value=0.5, label="Probability")
|
92 |
+
|
93 |
+
with gr.Column():
|
94 |
+
crop = gr.Checkbox(label="Random Crop")
|
95 |
+
prob_crop = gr.Slider(minimum=0, maximum=1, value=0.5, label="Probability")
|
96 |
+
|
97 |
+
with gr.Column():
|
98 |
+
gray = gr.Checkbox(label="Grayscale")
|
99 |
+
prob_gray = gr.Slider(minimum=0, maximum=1, value=0.5, label="Probability")
|
100 |
+
|
101 |
+
with gr.Column():
|
102 |
+
scale = gr.Checkbox(label="Random Scale (0.8-1.2x)")
|
103 |
+
prob_scale = gr.Slider(minimum=0, maximum=1, value=0.5, label="Probability")
|
104 |
+
|
105 |
+
with gr.Row():
|
106 |
+
run_button = gr.Button("Apply Augmentations")
|
107 |
+
|
108 |
+
run_button.click(
|
109 |
+
fn=apply_augmentations,
|
110 |
+
inputs=[
|
111 |
+
input_image,
|
112 |
+
flip_h, flip_v, rotate, crop, gray, scale,
|
113 |
+
prob_flip_h, prob_flip_v, prob_rotate, prob_crop, prob_gray, prob_scale
|
114 |
+
],
|
115 |
+
outputs=output_image
|
116 |
+
)
|
117 |
+
|
118 |
+
demo.launch()
|
119 |
+
|
120 |
+
if __name__ == "__main__":
|
121 |
+
main()
|