File size: 3,163 Bytes
17b9280
 
0b98105
f15cd74
 
0b98105
 
 
 
1e305c9
 
 
0b98105
b64ad10
 
 
 
 
 
 
f15cd74
 
 
17b9280
 
 
 
 
 
f15cd74
 
 
0b98105
 
 
 
 
 
 
f15cd74
ae3e60e
0b98105
ae3e60e
f15cd74
 
17b9280
f15cd74
0b98105
f15cd74
 
 
0b98105
f15cd74
 
0b98105
 
 
 
 
17b9280
f15cd74
 
0b98105
17b9280
 
 
f15cd74
ae3e60e
f15cd74
ae3e60e
 
 
 
 
f15cd74
 
17b9280
 
d602bf7
ae3e60e
 
f15cd74
17b9280
 
ae3e60e
0b98105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17b9280
 
f15cd74
17b9280
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import os

import nltk
import requests
import streamlit as st
from nltk.tokenize import sent_tokenize

from responses import SubmitQuestionAndDocumentsResponse

try:
    _ = nltk.data.find("tokenizers/punkt")
except LookupError:
    nltk.download("punkt")

try:
    from dotenv import load_dotenv
    load_dotenv()
except ImportError:
    pass



st.set_page_config(layout="wide")

if os.getenv("ENV") == "production":
    BASE_URL = "https://deven-cleric-backend.onrender.com"
else:
    BASE_URL = "http://localhost:8000"


def make_sidebar():
    with st.sidebar:
        # st.title("Sidebar")
        # st.write("This is a sidebar.")
        # st.write("You can add widgets here")
        st.write("This functionality is not implemented yet, but it is a placeholder for future use.")
        st.write("It can be easily implemented to select the model to use for the question answering task.")
        _ = st.selectbox("Select the model", ["GPT-4", "Claude Opus"], disabled=True)


def create_payload(question, documents):
    documents = documents.split(",")
    payload = {"question": question, "documents": documents}
    return payload


def main():
    st.title("Deven's Cleric Assignment")
    # print("Hello, World!")
    make_sidebar()

    col1, col2 = st.columns([1,1])

    with col1:
        # st.write("This is column 1")
        documents = st.text_area(
            "Enter the URLs of the documents (separated by commas)",
            value="https://storage.googleapis.com/cleric-assignment-call-logs/call_log_20240314_104111.txt, \
                https://storage.googleapis.com/cleric-assignment-call-logs/call_log_20240315_104111.txt"
        )

    with col2:
        # st.write("This is column 2")
        question = st.text_input(
            "Ask the question", value="What product design decisions did the team make?"
        )

    payload = create_payload(question, documents)


    data = SubmitQuestionAndDocumentsResponse(**payload)
    # on = st.toggle('View model dump', False, key='view_model_dump')
    # if on:
    #     st.write(data.model_dump())

    if st.button("Submit"):
        # url = "https://deven-cleric-backend.onrender.com/submit_question_and_documents/"
        url = f"{BASE_URL}/submit_question_and_documents/"
        resp = requests.post(url, json=data.model_dump())
        # st.write(resp.status_code)
        # st.write(resp.json())

        url_local_get = f"{BASE_URL}/get_question_and_facts/"
        resp = requests.get(url_local_get)
        # st.write(resp.status_code)
        fact_str = ""
        if resp.status_code == 200:
            # st.write(resp.json())
            facts = resp.json()["facts"]
            st.write("Facts:")
            # st.write(len(facts), type(facts))
            # facts = sent_tokenize(facts)
            for i, fact in enumerate(facts):
                if len(fact) > 0:
                    fact = fact.replace("$", f"{chr(92)}$")
                    sentences = sent_tokenize(fact)
                    for sentence in sentences:
                        fact_str += f"""1. {sentence}\n"""

            st.markdown(fact_str)



if __name__ == "__main__":
    main()