Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -28,7 +28,68 @@ def lagrange_interpolation(x, y, x_interp):
|
|
28 |
|
29 |
return y_interp
|
30 |
|
31 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
try:
|
33 |
x = np.array([float(val.strip()) for val in x_input.split(',')])
|
34 |
y = np.array([float(val.strip()) for val in y_input.split(',')])
|
@@ -46,24 +107,32 @@ def interpolate_and_plot(x_input, y_input, x_predict):
|
|
46 |
|
47 |
x_interp = np.linspace(min(x), max(x), 100)
|
48 |
|
49 |
-
|
|
|
|
|
|
|
|
|
50 |
y_interp = linear_interpolation(x, y, x_interp)
|
51 |
-
|
52 |
-
|
|
|
|
|
53 |
y_interp = quadratic_interpolation(x, y, x_interp)
|
54 |
-
|
55 |
-
else:
|
56 |
y_interp = lagrange_interpolation(x, y, x_interp)
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
67 |
|
68 |
# Predict y value for given x
|
69 |
if x_predict is not None:
|
@@ -71,23 +140,17 @@ def interpolate_and_plot(x_input, y_input, x_predict):
|
|
71 |
x_predict = float(x_predict)
|
72 |
if x_predict < min(x) or x_predict > max(x):
|
73 |
error_msg = f"Error: Prediction x value must be between {min(x)} and {max(x)}."
|
74 |
-
return
|
75 |
-
|
76 |
-
if len(x) == 2:
|
77 |
-
y_predict = linear_interpolation(x, y, [x_predict])[0]
|
78 |
-
elif len(x) == 3:
|
79 |
-
y_predict = quadratic_interpolation(x, y, [x_predict])[0]
|
80 |
-
else:
|
81 |
-
y_predict = lagrange_interpolation(x, y, [x_predict])[0]
|
82 |
|
83 |
-
|
84 |
-
ax.legend()
|
85 |
|
|
|
86 |
return fig, f"Predicted y value for x = {x_predict}: {y_predict:.4f}"
|
87 |
except ValueError:
|
88 |
error_msg = "Error: Invalid input for x prediction. Please enter a number."
|
89 |
return create_error_plot(error_msg), f'<p style="color: red;">{error_msg}</p>'
|
90 |
|
|
|
91 |
return fig, None
|
92 |
|
93 |
iface = gr.Interface(
|
@@ -95,14 +158,20 @@ iface = gr.Interface(
|
|
95 |
inputs=[
|
96 |
gr.Textbox(label="X values (comma-separated)"),
|
97 |
gr.Textbox(label="Y values (comma-separated)"),
|
98 |
-
gr.Number(label="X value to predict (optional)", value=lambda: None)
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
],
|
100 |
outputs=[
|
101 |
gr.Plot(label="Interpolation Plot"),
|
102 |
gr.HTML(label="Result or Error Message")
|
103 |
],
|
104 |
title="Interpolation App",
|
105 |
-
|
106 |
)
|
107 |
|
108 |
iface.launch()
|
|
|
28 |
|
29 |
return y_interp
|
30 |
|
31 |
+
def newton_forward_interpolation(x, y, x_interp):
|
32 |
+
n = len(x)
|
33 |
+
h = x[1] - x[0] # Assuming uniform spacing for simplicity
|
34 |
+
F = [[0 for _ in range(n)] for _ in range(n)]
|
35 |
+
for i in range(n):
|
36 |
+
F[i][0] = y[i]
|
37 |
+
|
38 |
+
for j in range(1, n):
|
39 |
+
for i in range(n - j):
|
40 |
+
F[i][j] = F[i+1][j-1] - F[i][j-1]
|
41 |
+
|
42 |
+
def newton_forward(x_val):
|
43 |
+
u = (x_val - x[0]) / h
|
44 |
+
result = y[0]
|
45 |
+
term = 1
|
46 |
+
for i in range(1, n):
|
47 |
+
term *= (u - i + 1) / i
|
48 |
+
result += term * F[0][i]
|
49 |
+
return result
|
50 |
+
|
51 |
+
return np.array([newton_forward(xi) for xi in x_interp])
|
52 |
+
|
53 |
+
def newton_backward_interpolation(x, y, x_interp):
|
54 |
+
n = len(x)
|
55 |
+
h = x[1] - x[0] # Assuming uniform spacing for simplicity
|
56 |
+
F = [[0 for _ in range(n)] for _ in range(n)]
|
57 |
+
for i in range(n):
|
58 |
+
F[i][0] = y[i]
|
59 |
+
|
60 |
+
for j in range(1, n):
|
61 |
+
for i in range(n - 1, j - 1, -1):
|
62 |
+
F[i][j] = F[i][j-1] - F[i-1][j-1]
|
63 |
+
|
64 |
+
def newton_backward(x_val):
|
65 |
+
u = (x_val - x[-1]) / h
|
66 |
+
result = y[-1]
|
67 |
+
term = 1
|
68 |
+
for i in range(1, n):
|
69 |
+
term *= (u + i - 1) / i
|
70 |
+
result += term * F[n-1][i]
|
71 |
+
return result
|
72 |
+
|
73 |
+
return np.array([newton_backward(xi) for xi in x_interp])
|
74 |
+
|
75 |
+
def create_and_edit_plot(x, y, x_interp, y_interp, method, plot_title, x_label, y_label, legend_position, label_size, x_predict=None, y_predict=None):
|
76 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
77 |
+
ax.scatter(x, y, color='red', label='Input points')
|
78 |
+
ax.plot(x_interp, y_interp, label=f'{method} interpolant')
|
79 |
+
ax.set_xlabel(x_label, fontsize=label_size)
|
80 |
+
ax.set_ylabel(y_label, fontsize=label_size)
|
81 |
+
ax.set_title(plot_title, fontsize=label_size + 2)
|
82 |
+
ax.legend(loc=legend_position, fontsize=label_size - 2)
|
83 |
+
ax.tick_params(axis='both', which='major', labelsize=label_size - 2)
|
84 |
+
ax.grid(True)
|
85 |
+
|
86 |
+
if x_predict is not None and y_predict is not None:
|
87 |
+
ax.scatter([x_predict], [y_predict], color='green', s=100, label='Predicted point')
|
88 |
+
ax.legend(loc=legend_position, fontsize=label_size - 2)
|
89 |
+
|
90 |
+
return fig
|
91 |
+
|
92 |
+
def interpolate_and_plot(x_input, y_input, x_predict, method, plot_title, x_label, y_label, legend_position, label_size):
|
93 |
try:
|
94 |
x = np.array([float(val.strip()) for val in x_input.split(',')])
|
95 |
y = np.array([float(val.strip()) for val in y_input.split(',')])
|
|
|
107 |
|
108 |
x_interp = np.linspace(min(x), max(x), 100)
|
109 |
|
110 |
+
# Interpolation method selection
|
111 |
+
if method == "Linear":
|
112 |
+
if len(x) < 2:
|
113 |
+
error_msg = "Error: At least two points are required for linear interpolation."
|
114 |
+
return create_error_plot(error_msg), f'<p style="color: red;">{error_msg}</p>'
|
115 |
y_interp = linear_interpolation(x, y, x_interp)
|
116 |
+
elif method == "Quadratic":
|
117 |
+
if len(x) < 3:
|
118 |
+
error_msg = "Error: At least three points are required for quadratic interpolation."
|
119 |
+
return create_error_plot(error_msg), f'<p style="color: red;">{error_msg}</p>'
|
120 |
y_interp = quadratic_interpolation(x, y, x_interp)
|
121 |
+
elif method == "Lagrange":
|
|
|
122 |
y_interp = lagrange_interpolation(x, y, x_interp)
|
123 |
+
elif method == "Newton Forward":
|
124 |
+
if not np.allclose(np.diff(x), x[1] - x[0]):
|
125 |
+
error_msg = "Error: Newton Forward method requires uniform x spacing."
|
126 |
+
return create_error_plot(error_msg), f'<p style="color: red;">{error_msg}</p>'
|
127 |
+
y_interp = newton_forward_interpolation(x, y, x_interp)
|
128 |
+
elif method == "Newton Backward":
|
129 |
+
if not np.allclose(np.diff(x), x[1] - x[0]):
|
130 |
+
error_msg = "Error: Newton Backward method requires uniform x spacing."
|
131 |
+
return create_error_plot(error_msg), f'<p style="color: red;">{error_msg}</p>'
|
132 |
+
y_interp = newton_backward_interpolation(x, y, x_interp)
|
133 |
+
else:
|
134 |
+
error_msg = "Error: Invalid interpolation method selected."
|
135 |
+
return create_error_plot(error_msg), f'<p style="color: red;">{error_msg}</p>'
|
136 |
|
137 |
# Predict y value for given x
|
138 |
if x_predict is not None:
|
|
|
140 |
x_predict = float(x_predict)
|
141 |
if x_predict < min(x) or x_predict > max(x):
|
142 |
error_msg = f"Error: Prediction x value must be between {min(x)} and {max(x)}."
|
143 |
+
return create_error_plot(error_msg), f'<p style="color: red;">{error_msg}</p>'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
+
y_predict = np.interp(x_predict, x_interp, y_interp)
|
|
|
146 |
|
147 |
+
fig = create_and_edit_plot(x, y, x_interp, y_interp, method, plot_title, x_label, y_label, legend_position, label_size, x_predict, y_predict)
|
148 |
return fig, f"Predicted y value for x = {x_predict}: {y_predict:.4f}"
|
149 |
except ValueError:
|
150 |
error_msg = "Error: Invalid input for x prediction. Please enter a number."
|
151 |
return create_error_plot(error_msg), f'<p style="color: red;">{error_msg}</p>'
|
152 |
|
153 |
+
fig = create_and_edit_plot(x, y, x_interp, y_interp, method, plot_title, x_label, y_label, legend_position, label_size)
|
154 |
return fig, None
|
155 |
|
156 |
iface = gr.Interface(
|
|
|
158 |
inputs=[
|
159 |
gr.Textbox(label="X values (comma-separated)"),
|
160 |
gr.Textbox(label="Y values (comma-separated)"),
|
161 |
+
gr.Number(label="X value to predict (optional)", value=lambda: None),
|
162 |
+
gr.Radio(["Linear", "Quadratic", "Lagrange", "Newton Forward", "Newton Backward"], label="Interpolation Method", value="Linear"),
|
163 |
+
gr.Textbox(label="Plot Title", value="Interpolation Plot"),
|
164 |
+
gr.Textbox(label="X-axis Label", value="x"),
|
165 |
+
gr.Textbox(label="Y-axis Label", value="y"),
|
166 |
+
gr.Dropdown(["best", "upper right", "upper left", "lower left", "lower right", "right", "center left", "center right", "lower center", "upper center", "center"], label="Legend Position", value="best"),
|
167 |
+
gr.Slider(minimum=8, maximum=24, step=1, label="Label Size", value=12)
|
168 |
],
|
169 |
outputs=[
|
170 |
gr.Plot(label="Interpolation Plot"),
|
171 |
gr.HTML(label="Result or Error Message")
|
172 |
],
|
173 |
title="Interpolation App",
|
174 |
+
description="Enter x and y values to see the interpolation graph. Choose the interpolation method using the radio buttons. Optionally, enter an x value (between min and max of input x values) to predict its corresponding y value. Note: Newton Forward and Backward methods require uniform x spacing. You can also customize the plot labels, legend position, and label size."
|
175 |
)
|
176 |
|
177 |
iface.launch()
|