devendergarg14 commited on
Commit
da45c29
·
verified ·
1 Parent(s): 40c40d0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +97 -28
app.py CHANGED
@@ -28,7 +28,68 @@ def lagrange_interpolation(x, y, x_interp):
28
 
29
  return y_interp
30
 
31
- def interpolate_and_plot(x_input, y_input, x_predict):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  try:
33
  x = np.array([float(val.strip()) for val in x_input.split(',')])
34
  y = np.array([float(val.strip()) for val in y_input.split(',')])
@@ -46,24 +107,32 @@ def interpolate_and_plot(x_input, y_input, x_predict):
46
 
47
  x_interp = np.linspace(min(x), max(x), 100)
48
 
49
- if len(x) == 2:
 
 
 
 
50
  y_interp = linear_interpolation(x, y, x_interp)
51
- method = "Linear"
52
- elif len(x) == 3:
 
 
53
  y_interp = quadratic_interpolation(x, y, x_interp)
54
- method = "Quadratic"
55
- else:
56
  y_interp = lagrange_interpolation(x, y, x_interp)
57
- method = "Lagrange"
58
-
59
- fig, ax = plt.subplots(figsize=(10, 6))
60
- ax.scatter(x, y, color='red', label='Input points')
61
- ax.plot(x_interp, y_interp, label=f'{method} interpolant')
62
- ax.set_xlabel('x')
63
- ax.set_ylabel('y')
64
- ax.set_title(f'{method} Interpolation')
65
- ax.legend()
66
- ax.grid(True)
 
 
 
67
 
68
  # Predict y value for given x
69
  if x_predict is not None:
@@ -71,23 +140,17 @@ def interpolate_and_plot(x_input, y_input, x_predict):
71
  x_predict = float(x_predict)
72
  if x_predict < min(x) or x_predict > max(x):
73
  error_msg = f"Error: Prediction x value must be between {min(x)} and {max(x)}."
74
- return fig, f'<p style="color: red;">{error_msg}</p>'
75
-
76
- if len(x) == 2:
77
- y_predict = linear_interpolation(x, y, [x_predict])[0]
78
- elif len(x) == 3:
79
- y_predict = quadratic_interpolation(x, y, [x_predict])[0]
80
- else:
81
- y_predict = lagrange_interpolation(x, y, [x_predict])[0]
82
 
83
- ax.scatter([x_predict], [y_predict], color='green', s=100, label='Predicted point')
84
- ax.legend()
85
 
 
86
  return fig, f"Predicted y value for x = {x_predict}: {y_predict:.4f}"
87
  except ValueError:
88
  error_msg = "Error: Invalid input for x prediction. Please enter a number."
89
  return create_error_plot(error_msg), f'<p style="color: red;">{error_msg}</p>'
90
 
 
91
  return fig, None
92
 
93
  iface = gr.Interface(
@@ -95,14 +158,20 @@ iface = gr.Interface(
95
  inputs=[
96
  gr.Textbox(label="X values (comma-separated)"),
97
  gr.Textbox(label="Y values (comma-separated)"),
98
- gr.Number(label="X value to predict (optional)", value=lambda: None)
 
 
 
 
 
 
99
  ],
100
  outputs=[
101
  gr.Plot(label="Interpolation Plot"),
102
  gr.HTML(label="Result or Error Message")
103
  ],
104
  title="Interpolation App",
105
- #description="Enter x and y values to see the interpolation graph. The method will be chosen based on the number of points:\n2 points: Linear, 3 points: Quadratic, >3 points: Lagrange. \nOptionally, enter an x value (between min and max of input x values) to predict its corresponding y value."
106
  )
107
 
108
  iface.launch()
 
28
 
29
  return y_interp
30
 
31
+ def newton_forward_interpolation(x, y, x_interp):
32
+ n = len(x)
33
+ h = x[1] - x[0] # Assuming uniform spacing for simplicity
34
+ F = [[0 for _ in range(n)] for _ in range(n)]
35
+ for i in range(n):
36
+ F[i][0] = y[i]
37
+
38
+ for j in range(1, n):
39
+ for i in range(n - j):
40
+ F[i][j] = F[i+1][j-1] - F[i][j-1]
41
+
42
+ def newton_forward(x_val):
43
+ u = (x_val - x[0]) / h
44
+ result = y[0]
45
+ term = 1
46
+ for i in range(1, n):
47
+ term *= (u - i + 1) / i
48
+ result += term * F[0][i]
49
+ return result
50
+
51
+ return np.array([newton_forward(xi) for xi in x_interp])
52
+
53
+ def newton_backward_interpolation(x, y, x_interp):
54
+ n = len(x)
55
+ h = x[1] - x[0] # Assuming uniform spacing for simplicity
56
+ F = [[0 for _ in range(n)] for _ in range(n)]
57
+ for i in range(n):
58
+ F[i][0] = y[i]
59
+
60
+ for j in range(1, n):
61
+ for i in range(n - 1, j - 1, -1):
62
+ F[i][j] = F[i][j-1] - F[i-1][j-1]
63
+
64
+ def newton_backward(x_val):
65
+ u = (x_val - x[-1]) / h
66
+ result = y[-1]
67
+ term = 1
68
+ for i in range(1, n):
69
+ term *= (u + i - 1) / i
70
+ result += term * F[n-1][i]
71
+ return result
72
+
73
+ return np.array([newton_backward(xi) for xi in x_interp])
74
+
75
+ def create_and_edit_plot(x, y, x_interp, y_interp, method, plot_title, x_label, y_label, legend_position, label_size, x_predict=None, y_predict=None):
76
+ fig, ax = plt.subplots(figsize=(10, 6))
77
+ ax.scatter(x, y, color='red', label='Input points')
78
+ ax.plot(x_interp, y_interp, label=f'{method} interpolant')
79
+ ax.set_xlabel(x_label, fontsize=label_size)
80
+ ax.set_ylabel(y_label, fontsize=label_size)
81
+ ax.set_title(plot_title, fontsize=label_size + 2)
82
+ ax.legend(loc=legend_position, fontsize=label_size - 2)
83
+ ax.tick_params(axis='both', which='major', labelsize=label_size - 2)
84
+ ax.grid(True)
85
+
86
+ if x_predict is not None and y_predict is not None:
87
+ ax.scatter([x_predict], [y_predict], color='green', s=100, label='Predicted point')
88
+ ax.legend(loc=legend_position, fontsize=label_size - 2)
89
+
90
+ return fig
91
+
92
+ def interpolate_and_plot(x_input, y_input, x_predict, method, plot_title, x_label, y_label, legend_position, label_size):
93
  try:
94
  x = np.array([float(val.strip()) for val in x_input.split(',')])
95
  y = np.array([float(val.strip()) for val in y_input.split(',')])
 
107
 
108
  x_interp = np.linspace(min(x), max(x), 100)
109
 
110
+ # Interpolation method selection
111
+ if method == "Linear":
112
+ if len(x) < 2:
113
+ error_msg = "Error: At least two points are required for linear interpolation."
114
+ return create_error_plot(error_msg), f'<p style="color: red;">{error_msg}</p>'
115
  y_interp = linear_interpolation(x, y, x_interp)
116
+ elif method == "Quadratic":
117
+ if len(x) < 3:
118
+ error_msg = "Error: At least three points are required for quadratic interpolation."
119
+ return create_error_plot(error_msg), f'<p style="color: red;">{error_msg}</p>'
120
  y_interp = quadratic_interpolation(x, y, x_interp)
121
+ elif method == "Lagrange":
 
122
  y_interp = lagrange_interpolation(x, y, x_interp)
123
+ elif method == "Newton Forward":
124
+ if not np.allclose(np.diff(x), x[1] - x[0]):
125
+ error_msg = "Error: Newton Forward method requires uniform x spacing."
126
+ return create_error_plot(error_msg), f'<p style="color: red;">{error_msg}</p>'
127
+ y_interp = newton_forward_interpolation(x, y, x_interp)
128
+ elif method == "Newton Backward":
129
+ if not np.allclose(np.diff(x), x[1] - x[0]):
130
+ error_msg = "Error: Newton Backward method requires uniform x spacing."
131
+ return create_error_plot(error_msg), f'<p style="color: red;">{error_msg}</p>'
132
+ y_interp = newton_backward_interpolation(x, y, x_interp)
133
+ else:
134
+ error_msg = "Error: Invalid interpolation method selected."
135
+ return create_error_plot(error_msg), f'<p style="color: red;">{error_msg}</p>'
136
 
137
  # Predict y value for given x
138
  if x_predict is not None:
 
140
  x_predict = float(x_predict)
141
  if x_predict < min(x) or x_predict > max(x):
142
  error_msg = f"Error: Prediction x value must be between {min(x)} and {max(x)}."
143
+ return create_error_plot(error_msg), f'<p style="color: red;">{error_msg}</p>'
 
 
 
 
 
 
 
144
 
145
+ y_predict = np.interp(x_predict, x_interp, y_interp)
 
146
 
147
+ fig = create_and_edit_plot(x, y, x_interp, y_interp, method, plot_title, x_label, y_label, legend_position, label_size, x_predict, y_predict)
148
  return fig, f"Predicted y value for x = {x_predict}: {y_predict:.4f}"
149
  except ValueError:
150
  error_msg = "Error: Invalid input for x prediction. Please enter a number."
151
  return create_error_plot(error_msg), f'<p style="color: red;">{error_msg}</p>'
152
 
153
+ fig = create_and_edit_plot(x, y, x_interp, y_interp, method, plot_title, x_label, y_label, legend_position, label_size)
154
  return fig, None
155
 
156
  iface = gr.Interface(
 
158
  inputs=[
159
  gr.Textbox(label="X values (comma-separated)"),
160
  gr.Textbox(label="Y values (comma-separated)"),
161
+ gr.Number(label="X value to predict (optional)", value=lambda: None),
162
+ gr.Radio(["Linear", "Quadratic", "Lagrange", "Newton Forward", "Newton Backward"], label="Interpolation Method", value="Linear"),
163
+ gr.Textbox(label="Plot Title", value="Interpolation Plot"),
164
+ gr.Textbox(label="X-axis Label", value="x"),
165
+ gr.Textbox(label="Y-axis Label", value="y"),
166
+ gr.Dropdown(["best", "upper right", "upper left", "lower left", "lower right", "right", "center left", "center right", "lower center", "upper center", "center"], label="Legend Position", value="best"),
167
+ gr.Slider(minimum=8, maximum=24, step=1, label="Label Size", value=12)
168
  ],
169
  outputs=[
170
  gr.Plot(label="Interpolation Plot"),
171
  gr.HTML(label="Result or Error Message")
172
  ],
173
  title="Interpolation App",
174
+ description="Enter x and y values to see the interpolation graph. Choose the interpolation method using the radio buttons. Optionally, enter an x value (between min and max of input x values) to predict its corresponding y value. Note: Newton Forward and Backward methods require uniform x spacing. You can also customize the plot labels, legend position, and label size."
175
  )
176
 
177
  iface.launch()