Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
|
5 |
+
def linear_interpolation(x, y, x_interp):
|
6 |
+
return np.interp(x_interp, x, y)
|
7 |
+
|
8 |
+
def quadratic_interpolation(x, y, x_interp):
|
9 |
+
coeffs = np.polyfit(x, y, 2)
|
10 |
+
return np.polyval(coeffs, x_interp)
|
11 |
+
|
12 |
+
def lagrange_interpolation(x, y, x_interp):
|
13 |
+
n = len(x)
|
14 |
+
y_interp = np.zeros_like(x_interp, dtype=float)
|
15 |
+
|
16 |
+
for i in range(n):
|
17 |
+
p = y[i]
|
18 |
+
for j in range(n):
|
19 |
+
if i != j:
|
20 |
+
p = p * (x_interp - x[j]) / (x[i] - x[j])
|
21 |
+
y_interp += p
|
22 |
+
|
23 |
+
return y_interp
|
24 |
+
|
25 |
+
def interpolate_and_plot(x_input, y_input, x_predict):
|
26 |
+
x = np.array([float(val.strip()) for val in x_input.split(',')])
|
27 |
+
y = np.array([float(val.strip()) for val in y_input.split(',')])
|
28 |
+
|
29 |
+
if len(x) != len(y):
|
30 |
+
return "Error: Number of x and y values must be the same.", None
|
31 |
+
|
32 |
+
x_interp = np.linspace(min(x), max(x), 100)
|
33 |
+
|
34 |
+
if len(x) == 2:
|
35 |
+
y_interp = linear_interpolation(x, y, x_interp)
|
36 |
+
method = "Linear"
|
37 |
+
elif len(x) == 3:
|
38 |
+
y_interp = quadratic_interpolation(x, y, x_interp)
|
39 |
+
method = "Quadratic"
|
40 |
+
else:
|
41 |
+
y_interp = lagrange_interpolation(x, y, x_interp)
|
42 |
+
method = "Lagrange"
|
43 |
+
|
44 |
+
plt.figure(figsize=(10, 6))
|
45 |
+
plt.scatter(x, y, color='red', label='Input points')
|
46 |
+
plt.plot(x_interp, y_interp, label=f'{method} interpolant')
|
47 |
+
plt.xlabel('x')
|
48 |
+
plt.ylabel('y')
|
49 |
+
plt.title(f'{method} Interpolation')
|
50 |
+
plt.legend()
|
51 |
+
plt.grid(True)
|
52 |
+
|
53 |
+
# Predict y value for given x
|
54 |
+
if x_predict is not None:
|
55 |
+
if x_predict < min(x) or x_predict > max(x):
|
56 |
+
return plt, f"Error: Prediction x value must be between {min(x)} and {max(x)}."
|
57 |
+
|
58 |
+
if len(x) == 2:
|
59 |
+
y_predict = linear_interpolation(x, y, [x_predict])[0]
|
60 |
+
elif len(x) == 3:
|
61 |
+
y_predict = quadratic_interpolation(x, y, [x_predict])[0]
|
62 |
+
else:
|
63 |
+
y_predict = lagrange_interpolation(x, y, [x_predict])[0]
|
64 |
+
|
65 |
+
plt.scatter([x_predict], [y_predict], color='green', s=100, label='Predicted point')
|
66 |
+
plt.legend()
|
67 |
+
|
68 |
+
return plt, f"Predicted y value for x = {x_predict}: {y_predict:.4f}"
|
69 |
+
|
70 |
+
return plt, None
|
71 |
+
|
72 |
+
iface = gr.Interface(
|
73 |
+
fn=interpolate_and_plot,
|
74 |
+
inputs=[
|
75 |
+
gr.Textbox(label="X values (comma-separated)"),
|
76 |
+
gr.Textbox(label="Y values (comma-separated)"),
|
77 |
+
gr.Number(label="X value to predict (optional)")
|
78 |
+
],
|
79 |
+
outputs=[
|
80 |
+
gr.Plot(label="Interpolation Plot"),
|
81 |
+
gr.Textbox(label="Predicted Y value")
|
82 |
+
],
|
83 |
+
title="Interpolation App",
|
84 |
+
description="Enter x and y values to see the interpolation graph. The method will be chosen based on the number of points:\n2 points: Linear, 3 points: Quadratic, >3 points: Lagrange.\n Optionally, enter an x value (between min and max of input x values) to predict its corresponding y value."
|
85 |
+
)
|
86 |
+
|
87 |
+
iface.launch()
|