Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,33 @@
|
|
1 |
import os
|
2 |
import streamlit as st
|
|
|
3 |
from groq import Groq
|
4 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
5 |
|
6 |
# Set up the Groq API Key
|
7 |
-
GROQ_API_KEY = "
|
8 |
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
|
9 |
|
10 |
# Initialize the Groq client
|
11 |
client = Groq(api_key=GROQ_API_KEY)
|
12 |
|
13 |
-
# Initialize Hugging Face DeepSeek R1 model
|
14 |
-
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
st.set_page_config(page_title="AI Study Assistant", page_icon="π€", layout="wide")
|
22 |
st.title("π Subject-specific AI Chatbot")
|
23 |
st.write("Hello! I'm your AI Study Assistant. You can ask me any questions related to your subjects, and I'll try to help.")
|
@@ -31,7 +41,7 @@ chat_model = st.sidebar.radio("Choose AI Model:", ["Groq API", "DeepSeek R1 (Hug
|
|
31 |
if 'conversation_history' not in st.session_state:
|
32 |
st.session_state.conversation_history = []
|
33 |
|
34 |
-
# Define
|
35 |
subjects = ["Chemistry", "Computer", "English", "Islamiat", "Mathematics", "Physics", "Urdu"]
|
36 |
|
37 |
def generate_chatbot_response(user_message):
|
@@ -51,7 +61,7 @@ def generate_chatbot_response(user_message):
|
|
51 |
else:
|
52 |
return generate_response_hf(prompt)
|
53 |
|
54 |
-
# User input
|
55 |
st.markdown("### π¬ Chat with me")
|
56 |
user_input = st.chat_input("Ask me a subject-related question:")
|
57 |
|
|
|
1 |
import os
|
2 |
import streamlit as st
|
3 |
+
import torch
|
4 |
from groq import Groq
|
5 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
6 |
|
7 |
# Set up the Groq API Key
|
8 |
+
GROQ_API_KEY = "your_groq_api_key_here" # Replace with your actual key
|
9 |
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
|
10 |
|
11 |
# Initialize the Groq client
|
12 |
client = Groq(api_key=GROQ_API_KEY)
|
13 |
|
14 |
+
# Initialize Hugging Face DeepSeek R1 model correctly
|
15 |
+
MODEL_NAME = "deepseek-ai/DeepSeek-R1"
|
16 |
|
17 |
+
try:
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
19 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, trust_remote_code=True, torch_dtype=torch.float16, device_map="auto")
|
20 |
|
21 |
+
def generate_response_hf(user_message):
|
22 |
+
inputs = tokenizer(user_message, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
|
23 |
+
outputs = model.generate(**inputs, max_length=200)
|
24 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
25 |
+
|
26 |
+
except Exception as e:
|
27 |
+
st.error(f"Error loading DeepSeek-R1: {str(e)}")
|
28 |
+
generate_response_hf = lambda x: "Error: Model not loaded."
|
29 |
+
|
30 |
+
# Streamlit UI setup
|
31 |
st.set_page_config(page_title="AI Study Assistant", page_icon="π€", layout="wide")
|
32 |
st.title("π Subject-specific AI Chatbot")
|
33 |
st.write("Hello! I'm your AI Study Assistant. You can ask me any questions related to your subjects, and I'll try to help.")
|
|
|
41 |
if 'conversation_history' not in st.session_state:
|
42 |
st.session_state.conversation_history = []
|
43 |
|
44 |
+
# Define subjects
|
45 |
subjects = ["Chemistry", "Computer", "English", "Islamiat", "Mathematics", "Physics", "Urdu"]
|
46 |
|
47 |
def generate_chatbot_response(user_message):
|
|
|
61 |
else:
|
62 |
return generate_response_hf(prompt)
|
63 |
|
64 |
+
# User input
|
65 |
st.markdown("### π¬ Chat with me")
|
66 |
user_input = st.chat_input("Ask me a subject-related question:")
|
67 |
|