Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import pickle | |
def get_input_data(): | |
gender_map = {"Male": 1, "Female": 2} | |
edu_map = {"Graduate School": 1, "University": 2, "High School": 3, "Others": 4} | |
marital_map = {"Married": 1, "Single": 2, "Others": 3} | |
pay_option_map = { | |
"-2: Unused": -2, | |
"-1: Pay duly": -1, | |
"0: Revolving credit": 0, | |
"1: One month late payment": 1, | |
"2: Two months late payment": 2, | |
"3: Three months late payment": 3, | |
"4: Four months late payment": 4, | |
"5: Five months late payment": 5, | |
"6: Six months late payment": 6, | |
"7: Seven months late payment": 7, | |
"8: Eight months late payment": 8, | |
"9: Nine months or above late payment": 9 | |
} | |
limit_balance = st.number_input(label="Input the account's limit balance", min_value=0.0) | |
gender = gender_map[st.selectbox(label="Gender", options=list(gender_map.keys()))] | |
education = edu_map[st.selectbox(label="Education level", options=list(edu_map.keys()))] | |
marital = marital_map[st.selectbox(label="Marital status", options=list(marital_map.keys()))] | |
age = st.number_input(label="Age", min_value=18, format='%d') | |
pay_status, bill_amt, paid_amt = {}, {}, {} | |
months = ["September", "August", "July", "June", "May", "April"] | |
for month in months: | |
pay_status[month] = pay_option_map[st.selectbox(label=f"Repayment status in {month}", options=list(pay_option_map.keys()))] | |
bill_amt[month] = st.number_input(label=f"Bill amount in {month}") | |
paid_amt[month] = st.number_input(label=f"Paid amount in {month}", min_value=0.0) | |
return pd.DataFrame({ | |
"limit_balance": [limit_balance], | |
"gender": [gender], | |
"education_level": [education], | |
"marital_status": [marital], | |
"age": [age], | |
**{f"pay_{i}": [pay_status[month]] for i, month in enumerate(months, start=1)}, | |
**{f"bill_amt_{i}": [bill_amt[month]] for i, month in enumerate(months, start=1)}, | |
**{f"pay_amt_{i}": [paid_amt[month]] for i, month in enumerate(months, start=1)} | |
}) | |
def display_prediction(data_inf): | |
with open("model_svm.pkl", 'rb') as file: | |
model = pickle.load(file) | |
y_pred_inf = model.predict(data_inf) | |
if y_pred_inf == 0: | |
st.write("Not Default Payment") | |
else: | |
st.write("Default Payment") | |
def run(): | |
st.title("Predict the payment type") | |
data_inf = get_input_data() | |
st.header("Table Input") | |
st.table(data_inf) | |
if st.button(label="Predict"): | |
display_prediction(data_inf) | |