Spaces:
Runtime error
Runtime error
File size: 2,051 Bytes
0f1bb12 4d26a0d 0f1bb12 4d26a0d 0f1bb12 2a0ffec 0f1bb12 4d26a0d 6ac1fcf 0f1bb12 f7a089e 4d26a0d 0f1bb12 4d26a0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
import supervision as sv
import gradio as gr
from ultralytics import YOLO
import sahi
import numpy as np
# Images
sahi.utils.file.download_from_url(
"https://transform.roboflow.com/zZuu207UOVOOJKuuCpmV/3512b3839afacecec643949bef398e99/thumb.jpg",
"tu1.jpg",
)
sahi.utils.file.download_from_url(
"https://transform.roboflow.com/zZuu207UOVOOJKuuCpmV/5b8b940fae2f9e4952395bcced0688aa/thumb.jpg",
"tu2.jpg",
)
sahi.utils.file.download_from_url(
"https://transform.roboflow.com/zZuu207UOVOOJKuuCpmV/347e10ab7aa2b399ec546f2037d8c786/thumb.jpg",
"tu3.jpg",
)
annotatorbbox = sv.BoxAnnotator()
annotatormask=sv.MaskAnnotator()
def yolov8_inference(
image: gr.inputs.Image = None,
model_name: gr.inputs.Dropdown = None,
image_size: gr.inputs.Slider = 360,
conf_threshold: gr.inputs.Slider = 0.25,
iou_threshold: gr.inputs.Slider = 0.45,
):
image=image[:, :, ::-1].astype(np.uint8)
model = YOLO("https://huggingface.co/spaces/devisionx/Fifth_demo/blob/main/best_weigh.pt")
results = model(image,imgsz=360)[0]
image=image[:, :, ::-1].astype(np.uint8)
detections = sv.Detections.from_yolov8(results)
annotated_image = annotatorbbox.annotate(scene=image, detections=detections)
return annotated_image
image_input = gr.inputs.Image() # Adjust the shape according to your requirements
inputs = [
gr.inputs.Image(label="Input Image"),
gr.Slider(
minimum=0.0, maximum=1.0, value=0.25, step=0.05, label="Confidence Threshold"
),
gr.Slider(minimum=0.0, maximum=1.0, value=0.45, step=0.05, label="IOU Threshold"),
]
outputs = gr.Image(type="filepath", label="Output Image")
title = "Ultralytics YOLOv8 Segmentation Demo"
import os
examples = [
["tu1.jpg", 0.6, 0.45],
["tu2.jpg", 0.25, 0.45],
["tu3.jpg", 0.25, 0.45],
]
demo_app = gr.Interface(examples=examples,
fn=yolov8_inference,
inputs=inputs,
outputs=outputs,
title=title,
cache_examples=True,
theme="default",
)
demo_app.launch(debug=False, enable_queue=True) |