Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -46,30 +46,64 @@ def yolov8_inference(
|
|
46 |
|
47 |
return annotated_image
|
48 |
|
49 |
-
image_input = gr.inputs.Image() # Adjust the shape according to your requirements
|
50 |
-
|
51 |
-
inputs = [
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
]
|
58 |
-
|
59 |
-
outputs = gr.Image(type="filepath", label="Output Image")
|
60 |
-
title = "Brain Tumor Demo"
|
61 |
import os
|
62 |
examples = [
|
63 |
["tu1.jpg", 0.6, 0.45],
|
64 |
["tu2.jpg", 0.25, 0.45],
|
65 |
["tu3.jpg", 0.25, 0.45],
|
66 |
]
|
67 |
-
demo_app = gr.Interface(examples=examples,
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
)
|
75 |
-
demo_app.launch(debug=False, enable_queue=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
return annotated_image
|
48 |
|
49 |
+
# image_input = gr.inputs.Image() # Adjust the shape according to your requirements
|
50 |
+
|
51 |
+
# inputs = [
|
52 |
+
# gr.inputs.Image(label="Input Image"),
|
53 |
+
# gr.Slider(
|
54 |
+
# minimum=0.0, maximum=1.0, value=0.25, step=0.05, label="Confidence Threshold"
|
55 |
+
# ),
|
56 |
+
# gr.Slider(minimum=0.0, maximum=1.0, value=0.45, step=0.05, label="IOU Threshold"),
|
57 |
+
# ]
|
58 |
+
|
59 |
+
# outputs = gr.Image(type="filepath", label="Output Image")
|
60 |
+
# title = "Brain Tumor Demo"
|
61 |
import os
|
62 |
examples = [
|
63 |
["tu1.jpg", 0.6, 0.45],
|
64 |
["tu2.jpg", 0.25, 0.45],
|
65 |
["tu3.jpg", 0.25, 0.45],
|
66 |
]
|
67 |
+
# demo_app = gr.Interface(examples=examples,
|
68 |
+
# fn=yolov8_inference,
|
69 |
+
# inputs=inputs,
|
70 |
+
# outputs=outputs,
|
71 |
+
# title=title,
|
72 |
+
# cache_examples=True,
|
73 |
+
# theme="default",
|
74 |
+
# )
|
75 |
+
# demo_app.launch(debug=False, enable_queue=True)
|
76 |
+
gr.Examples(examples) # Add the examples to the app
|
77 |
+
with gr.Blocks() as demo:
|
78 |
+
gr.Markdown(
|
79 |
+
"""
|
80 |
+
# Tuba Brain Tumor Demo
|
81 |
+
|
82 |
+
[Tuba](https://Tuba.ai)
|
83 |
+
"""
|
84 |
+
)
|
85 |
+
# Define the input components and add them to the layout
|
86 |
+
with gr.Row():
|
87 |
+
image_input = gr.inputs.Image()
|
88 |
+
|
89 |
+
|
90 |
+
outputs = gr.Image(type="filepath", label="Output Image")
|
91 |
+
|
92 |
+
# Define the output component and add it to the layout
|
93 |
+
with gr.Row():
|
94 |
+
conf_slider=gr.Slider(minimum=0.0, maximum=1.0, value=0.25, step=0.05, label="Confidence Threshold" )
|
95 |
+
with gr.Row():
|
96 |
+
IOU_Slider=gr.Slider(minimum=0.0, maximum=1.0, value=0.45, step=0.05, label="IOU Threshold")
|
97 |
+
|
98 |
+
gr.Examples(examples) # Add the examples to
|
99 |
+
|
100 |
+
with gr.Row():
|
101 |
+
button = gr.Button("Run")
|
102 |
+
|
103 |
+
# Define the event listener that connects the input and output components and triggers the function
|
104 |
+
button.click(fn=get_results, inputs=[image_input, conf_slider,IOU_Slider], outputs=output, api_name="yolov8_inference")
|
105 |
+
# Add the description below the layout
|
106 |
+
gr.Markdown(description_html)
|
107 |
+
# Launch the app
|
108 |
+
demo.launch(share=False)
|
109 |
+
|