Spaces:
Running
Running
import supervision as sv | |
import gradio as gr | |
from ultralytics import YOLO | |
import sahi | |
import numpy as np | |
# Images | |
sahi.utils.file.download_from_url( | |
"https://transform.roboflow.com/zD7y6XOoQnh7WC160Ae7/48174c7c26c2cbca52b084ebbb03d215/thumb.jpg", | |
"f2.jpg", | |
) | |
sahi.utils.file.download_from_url( | |
"https://transform.roboflow.com/zD7y6XOoQnh7WC160Ae7/3d1f22e387164a6719995aa0d9dc16a1/thumb.jpg", | |
"f3.jpg", | |
) | |
annotatorbbox = sv.BoxAnnotator() | |
annotatormask=sv.MaskAnnotator() | |
def yolov8_inference( | |
image: gr.inputs.Image = None, | |
conf_threshold: gr.inputs.Slider = 0.5, | |
iou_threshold: gr.inputs.Slider = 0.45, | |
): | |
image=image[:, :, ::-1].astype(np.uint8) | |
model = YOLO("https://huggingface.co/spaces/devisionx/Second_demo/blob/main/best.pt") | |
results = model(image,imgsz=320)[0] | |
image=image[:, :, ::-1].astype(np.uint8) | |
detections = sv.Detections.from_yolov8(results) | |
annotated_image = annotatormask.annotate(scene=image, detections=detections) | |
annotated_image = annotatorbbox.annotate(scene=annotated_image , detections=detections) | |
return annotated_image | |
image_input = gr.inputs.Image() # Adjust the shape according to your requirements | |
inputs = [ | |
gr.inputs.Image(label="Input Image"), | |
gr.Slider( | |
minimum=0.0, maximum=1.0, value=0.25, step=0.05, label="Confidence Threshold" | |
), | |
gr.Slider(minimum=0.0, maximum=1.0, value=0.45, step=0.05, label="IOU Threshold"), | |
] | |
outputs = gr.Image(type="filepath", label="Output Image") | |
title = "Fire Smoke Demo" | |
import os | |
examples = [ | |
["f2.jpg", 0.25, 0.45], | |
["f3.jpg", 0.25, 0.45], | |
] | |
demo_app = gr.Interface(examples=examples, | |
fn=yolov8_inference, | |
inputs=inputs, | |
outputs=outputs, | |
title=title, | |
cache_examples=True, | |
theme="default", | |
) | |
demo_app.launch(debug=False, enable_queue=True) |