mennamostafa55555 commited on
Commit
44688fd
·
1 Parent(s): 6e67afa

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -16
app.py CHANGED
@@ -2,14 +2,10 @@ import supervision as sv
2
  import gradio as gr
3
  from ultralytics import YOLO
4
  import sahi
5
-
6
 
7
 
8
  # Images
9
- sahi.utils.file.download_from_url(
10
- "https://transform.roboflow.com/zD7y6XOoQnh7WC160Ae7/4d51f997137c0dca78fa2c9154e0b51a/thumb.jpg",
11
- "f1.jpg",
12
- )
13
  sahi.utils.file.download_from_url(
14
  "https://transform.roboflow.com/zD7y6XOoQnh7WC160Ae7/48174c7c26c2cbca52b084ebbb03d215/thumb.jpg",
15
  "f2.jpg",
@@ -28,19 +24,17 @@ annotatormask=sv.MaskAnnotator()
28
 
29
  def yolov8_inference(
30
  image: gr.inputs.Image = None,
31
- model_name: gr.inputs.Dropdown = None,
32
- image_size: gr.inputs.Slider = 360,
33
- conf_threshold: gr.inputs.Slider = 0.25,
34
  iou_threshold: gr.inputs.Slider = 0.45,
35
  ):
36
 
37
-
38
- model = YOLO("https://huggingface.co/spaces/devisionx/Second_demo/blob/main/best.pt")
39
-
40
- results = model(image,conf=conf_threshold,iou=iou_threshold ,imgsz=360)[0]
41
  detections = sv.Detections.from_yolov8(results)
42
- annotated_image = annotatorbbox.annotate(scene=image, detections=detections)
43
- annotated_image = annotatormask.annotate(scene=annotated_image, detections=detections)
44
 
45
 
46
 
@@ -61,7 +55,6 @@ outputs = gr.Image(type="filepath", label="Output Image")
61
  title = "Ultralytics YOLOv8 Segmentation Demo"
62
  import os
63
  examples = [
64
- ["f1.jpg", 0.6, 0.45],
65
  ["f2.jpg", 0.25, 0.45],
66
  ["f3.jpg", 0.25, 0.45],
67
  ]
@@ -73,4 +66,4 @@ demo_app = gr.Interface(examples=examples,
73
  cache_examples=True,
74
  theme="default",
75
  )
76
- demo_app.launch(debug=True, enable_queue=True)
 
2
  import gradio as gr
3
  from ultralytics import YOLO
4
  import sahi
5
+ import numpy as np
6
 
7
 
8
  # Images
 
 
 
 
9
  sahi.utils.file.download_from_url(
10
  "https://transform.roboflow.com/zD7y6XOoQnh7WC160Ae7/48174c7c26c2cbca52b084ebbb03d215/thumb.jpg",
11
  "f2.jpg",
 
24
 
25
  def yolov8_inference(
26
  image: gr.inputs.Image = None,
27
+ conf_threshold: gr.inputs.Slider = 0.5,
 
 
28
  iou_threshold: gr.inputs.Slider = 0.45,
29
  ):
30
 
31
+ image=image[:, :, ::-1].astype(np.uint8)
32
+ model = YOLO("/content/segment/train/weights/best.pt")
33
+ results = model(image,imgsz=320)[0]
34
+ image=image[:, :, ::-1].astype(np.uint8)
35
  detections = sv.Detections.from_yolov8(results)
36
+ annotated_image = annotatormask.annotate(scene=image, detections=detections)
37
+ annotated_image = annotatorbbox.annotate(scene=annotated_image , detections=detections)
38
 
39
 
40
 
 
55
  title = "Ultralytics YOLOv8 Segmentation Demo"
56
  import os
57
  examples = [
 
58
  ["f2.jpg", 0.25, 0.45],
59
  ["f3.jpg", 0.25, 0.45],
60
  ]
 
66
  cache_examples=True,
67
  theme="default",
68
  )
69
+ demo_app.launch(debug=False, enable_queue=True)