Spaces:
Runtime error
Runtime error
File size: 4,893 Bytes
cc7179a c75d65a cc7179a 1d6ad45 cc7179a c75d65a cc7179a c75d65a e8d8961 9c6e363 c75d65a cc7179a c75d65a cc7179a 95410e0 cc7179a b0be920 95410e0 cc7179a 9c6e363 cc7179a 95410e0 8afaf27 95410e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
import supervision as sv
import gradio as gr
from ultralytics import YOLO
import sahi
import numpy as np
# Images
sahi.utils.file.download_from_url(
"https://transform.roboflow.com/aHClLv0V9gWdgkEi3TZOcyGv4zZ2/2b24b3f5ef9330424b9fda06ad38f98a/thumb.jpg",
"m1.jpg",
)
sahi.utils.file.download_from_url(
"https://transform.roboflow.com/aHClLv0V9gWdgkEi3TZOcyGv4zZ2/751a6fca76be162856174c24048b293d/thumb.jpg",
"m2.jpg",
)
annotatorbbox = sv.BoxAnnotator()
annotatormask=sv.MaskAnnotator()
def yolov8_inference(
image: gr.inputs.Image = None,
conf_threshold: gr.inputs.Slider = 0.5,
iou_threshold: gr.inputs.Slider = 0.45,
):
image=image[:, :, ::-1].astype(np.uint8)
model = YOLO("https://huggingface.co/spaces/devisionx/Final_demo/blob/main/best_weights.pt")
results = model(image,imgsz=360,conf=conf_threshold,iou=iou_threshold)[0]
image=image[:, :, ::-1].astype(np.uint8)
detections = sv.Detections.from_yolov8(results)
annotated_image = annotatormask.annotate(scene=image, detections=detections)
annotated_image = annotatorbbox.annotate(scene=annotated_image , detections=detections)
return annotated_image
'''
image_input = gr.inputs.Image() # Adjust the shape according to your requirements
inputs = [
gr.inputs.Image(label="Input Image"),
gr.Slider(
minimum=0.0, maximum=1.0, value=0.25, step=0.05, label="Confidence Threshold"
),
gr.Slider(minimum=0.0, maximum=1.0, value=0.45, step=0.05, label="IOU Threshold"),
]
outputs = gr.Image(type="filepath", label="Output Image")
title = "Materials-Demo"
'''
import os
examples = [
["m1.jpg", 0.25, 0.45],
["m2.jpg", 0.25, 0.45],
]
outputs_images = [
["1.jpg"], # First example: an output image for the cat example
["2.jpg"] # Second example: an output image for the dog example
]
readme_html = """
<html>
<head>
<style>
.description {
margin: 20px;
padding: 10px;
border: 1px solid #ccc;
}
</style>
</head>
<body>
<div class="description">
<p><strong>More details:</strong></p>
<p>We present a demo for performing object segmentation with training a Yolov8-seg on Materials dataset. The model was trained on 4424 training images and validated on 464 images.</p>
<p><strong>Usage:</strong></p>
<p>You can upload Material images, and the demo will provide you with your segmented image.</p>
<p><strong>Dataset:</strong></p>
<p>The dataset contains 6,365 images and is formatted in COCO style. To facilitate usage with YOLOv8-seg, we have converted it into YOLOv8 format</p>
<ul>
<li><strong>Training Set:</strong> It includes 4424 images and is intended for training the model.</li>
<li><strong>Validation Set:</strong> There are 464 images in the validation set, which is used for optimizing model parameters during development.</li>
<li><strong>Test Set:</strong> This set consists of 1477 images and serves as a separate evaluation dataset to assess the performance of trained models.</li>
</ul>
<p><strong>License:</strong> This dataset is made available under the Creative Commons Attribution 4.0 International License (CC BY 4.0).</p>
<p>To access and download this dataset, please follow this link: <a href="https://universe.roboflow.com/expand-ai/materials-semantic" target="_blank">Dataset Download</a></p>
</body>
</html>
"""
with gr.Blocks() as demo:
gr.Markdown(
"""
<div style="text-align: center;">
<h1>Materials-Demo</h1>
Powered by <a href="https://Tuba.ai">Tuba</a>
</div>
"""
)
# Define the input components and add them to the layout
with gr.Row():
image_input = gr.inputs.Image()
outputs = gr.Image(type="filepath", label="Output Image")
# Define the output component and add it to the layout
with gr.Row():
conf_slider=gr.Slider(minimum=0.0, maximum=1.0, value=0.25, step=0.05, label="Confidence Threshold" )
with gr.Row():
IOU_Slider=gr.Slider(minimum=0.0, maximum=1.0, value=0.45, step=0.05, label="IOU Threshold")
button = gr.Button("Run")
# Define the event listener that connects the input and output components and triggers the function
button.click(fn=yolov8_inference, inputs=[image_input, conf_slider,IOU_Slider], outputs=outputs, api_name="yolov8_inference")
gr.Examples(
fn=yolov8_inference,
examples=examples,
inputs=[image_input, conf_slider,IOU_Slider],
outputs=[outputs]
)
# gr.Examples(inputs=examples, outputs=outputs_images)
# Add the description below the layout
gr.Markdown(readme_html)
# Launch the app
demo.launch(share=False) |