File size: 4,951 Bytes
f22bcea
 
 
 
857e0c5
f22bcea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac029d1
f22bcea
857e0c5
f22bcea
 
857e0c5
f22bcea
 
 
857e0c5
 
 
 
f22bcea
857e0c5
 
f22bcea
 
 
 
 
e9b261e
f22bcea
 
 
 
 
 
 
 
 
 
 
a79dfef
e9b261e
f22bcea
 
 
 
 
e9b261e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import supervision as sv
import gradio as gr
from ultralytics import YOLO
import sahi
import numpy as np




# Images
sahi.utils.file.download_from_url(
    "https://www.erbanotizie.com/wp-content/uploads/2014/01/Casello.jpg",
    "ocr1.jpg",
)
sahi.utils.file.download_from_url(
    "https://media-cdn.tripadvisor.com/media/photo-s/15/1d/03/18/receipt.jpg",
    "ocr2.jpg",
)
sahi.utils.file.download_from_url(
    "https://upload.forumfree.net/i/ff11450850/b5ef33b7-01da-4055-9ece-089b2a35a193.jpg",
    "ocr3.jpg",
)




annotatorbbox = sv.BoxAnnotator()
annotatormask=sv.MaskAnnotator()
model = YOLO("best_Receipt.pt")


def yolov8_inference(
    image: gr.inputs.Image = None,
    conf_threshold: gr.inputs.Slider = 0.5,
    iou_threshold: gr.inputs.Slider = 0.45,
):

    image=image[:, :, ::-1].astype(np.uint8)
    model = YOLO("https://huggingface.co/spaces/devisionx/first-demo/blob/main/best_Receipt.pt")
    results = model(image,imgsz=320)[0]
    image=image[:, :, ::-1].astype(np.uint8)
    detections = sv.Detections.from_yolov8(results)
    annotated_image = annotatormask.annotate(scene=image, detections=detections)
    annotated_image = annotatorbbox.annotate(scene=annotated_image , detections=detections)


    

    return annotated_image
'''
image_input = gr.inputs.Image()  # Adjust the shape according to your requirements

inputs = [
    gr.inputs.Image(label="Input Image"),
    gr.Slider(
        minimum=0.0, maximum=1.0, value=0.25, step=0.05, label="Confidence Threshold"
    ),
    gr.Slider(minimum=0.0, maximum=1.0, value=0.45, step=0.05, label="IOU Threshold"),
]

outputs = gr.Image(type="filepath", label="Output Image")
title = "OCR Demo"
'''
examples = [
    ["ocr1.jpg", 0.6, 0.45],
    ["ocr2.jpg", 0.25, 0.45],
    ["ocr3.jpg", 0.25, 0.45],
]
outputs_images = [
    ["1.jpg"], # First example: an output image for the cat example
    ["2.jpg"] # Second example: an output image for the dog example
    ,["3.jpg"]
]

readme_html = """
<html>
<head>
    <style>
        .description {
            margin: 20px;
            padding: 10px;
            border: 1px solid #ccc;
        }
    </style>
</head>
<body>
    <div class="description">
        <p><strong>More details:</strong></p>
        <p>We present a demo for performing object segmentation using a model trained on OCR-Receipt dataset. The model was trained on 54 training images and validated on 15 images.</p>
        <p><strong>Usage:</strong></p>
        <p>You can upload receipt images, and the demo will provide you with your segmented image.</p>
        <p><strong>Dataset:</strong></p>
        <p>This dataset comprises a total of 77 images, which are divided into three distinct sets for various purposes:</p>
        <ul>
            <li><strong>Training Set:</strong> It includes 54 images and is intended for training the model.</li>
            <li><strong>Validation Set:</strong> There are 15 images in the validation set, which is used for optimizing model parameters during development.</li>
            <li><strong>Test Set:</strong> This set consists of 8 images and serves as a separate evaluation dataset to assess the performance of trained models.</li>
        </ul>
        <p><strong>License:</strong> This dataset is made available under the Creative Commons Attribution 4.0 International License (CC BY 4.0).</p>
        <p>To access and download this dataset, please follow this link: <a href=" https://universe.roboflow.com/study-0w9zw/ocr-receipt" target="_blank">Dataset Download</a></p>
        
        
</body>
</html>
"""
with gr.Blocks() as demo:
    gr.Markdown(
        """
        <div style="text-align: center;">
            <h1>OCR Demo</h1>
            Powered by <a href="https://Tuba.ai">Tuba</a>
        </div>
        """
    )


    # Define the input components and add them to the layout
    with gr.Row():
        image_input = gr.inputs.Image()
        
        
        outputs = gr.Image(type="filepath", label="Output Image")
        
    # Define the output component and add it to the layout
    with gr.Row():
        conf_slider=gr.Slider(minimum=0.0, maximum=1.0, value=0.25, step=0.05, label="Confidence Threshold" )
    with gr.Row():
        IOU_Slider=gr.Slider(minimum=0.0, maximum=1.0, value=0.45, step=0.05, label="IOU Threshold")
    
    
    

    button = gr.Button("Run")
    
        
    # Define the event listener that connects the input and output components and triggers the function
    button.click(fn=yolov8_inference, inputs=[image_input, conf_slider,IOU_Slider], outputs=outputs, api_name="yolov8_inference")
    
    gr.Examples(
            fn=yolov8_inference,
            examples=examples,
            inputs=[image_input, conf_slider,IOU_Slider],
            outputs=[outputs]
        )
    # gr.Examples(inputs=examples, outputs=outputs_images)
    # Add the description below the layout
    gr.Markdown(readme_html)
# Launch the app
demo.launch(share=False)