File size: 5,810 Bytes
7d1f745
329c034
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import gradio as gr
import torch
import cv2
import numpy as np
import time
from ultralytics import YOLO

# Define People Tracking
class PeopleTracking:
    def __init__(self, yolo_model_path="yolov8n.pt"):
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.model = YOLO(yolo_model_path).to(self.device)
    
    def track_people(self, video_path):
        cap = cv2.VideoCapture(video_path)
        output_path = "output_tracking.mp4"
        fourcc = cv2.VideoWriter_fourcc(*"mp4v")
        out = cv2.VideoWriter(output_path, fourcc, int(cap.get(cv2.CAP_PROP_FPS)),
                              (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))))
        
        while cap.isOpened():
            ret, frame = cap.read()
            if not ret:
                break
            
            results = self.model.track(frame, persist=True)
            for result in results:
                boxes = result.boxes.xyxy.cpu().numpy()
                classes = result.boxes.cls.cpu().numpy()
                ids = result.boxes.id.cpu().numpy() if hasattr(result.boxes, "id") else np.arange(len(boxes))
                
                for box, cls, obj_id in zip(boxes, classes, ids):
                    if int(cls) == 0:
                        x1, y1, x2, y2 = map(int, box)
                        cv2.rectangle(frame, (x1, y1), (x2, y2), (255, 0, 0), 2)
                        cv2.putText(frame, f"ID {int(obj_id)}", (x1, y1 - 10),
                                    cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2)
            
            out.write(frame)
        
        cap.release()
        out.release()
        return output_path

# Define Fall Detection
class FallDetection:
    def __init__(self, yolo_model_path="yolov8l.pt"):
        self.model = YOLO(yolo_model_path)
    
    def detect_fall(self, video_path):
        cap = cv2.VideoCapture(video_path)
        output_path = "output_fall.mp4"
        fourcc = cv2.VideoWriter_fourcc(*"mp4v")
        out = cv2.VideoWriter(output_path, fourcc, int(cap.get(cv2.CAP_PROP_FPS)),
                              (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))))
        
        while cap.isOpened():
            ret, frame = cap.read()
            if not ret:
                break
            
            results = self.model(frame)
            for result in results:
                boxes = result.boxes.xyxy.cpu().numpy()
                classes = result.boxes.cls.cpu().numpy()
                
                for box, cls in zip(boxes, classes):
                    if int(cls) == 0:
                        x1, y1, x2, y2 = map(int, box)
                        width = x2 - x1
                        height = y2 - y1
                        aspect_ratio = width / height
                        
                        if aspect_ratio > 0.55:
                            color = (0, 0, 255)
                            label = "FALL DETECTED"
                        else:
                            color = (0, 255, 0)
                            label = "Standing"
                        
                        cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2)
                        cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
            
            out.write(frame)
        
        cap.release()
        out.release()
        return output_path

# Define Fight Detection
class FightDetection:
    def __init__(self, yolo_model_path="yolov8n-pose.pt"):
        self.model = YOLO(yolo_model_path).to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
    
    def detect_fight(self, video_path):
        cap = cv2.VideoCapture(video_path)
        output_path = "output_fight.mp4"
        fourcc = cv2.VideoWriter_fourcc(*"mp4v")
        out = cv2.VideoWriter(output_path, fourcc, int(cap.get(cv2.CAP_PROP_FPS)),
                              (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))))
        
        while cap.isOpened():
            ret, frame = cap.read()
            if not ret:
                break
            
            results = self.model.track(frame, persist=True)
            for result in results:
                keypoints = result.keypoints.xy.cpu().numpy() if result.keypoints else []
                classes = result.boxes.cls.cpu().numpy() if result.boxes else []
                
                for kp, cls in zip(keypoints, classes):
                    if int(cls) == 0:
                        x1, y1 = int(kp[0][0]), int(kp[0][1])
                        x2, y2 = int(kp[-1][0]), int(kp[-1][1])
                        cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255), 2)
                        cv2.putText(frame, "FIGHT DETECTED", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
            
            out.write(frame)
        
        cap.release()
        out.release()
        return output_path

# Function to process video based on selected feature
def process_video(feature, video):
    detectors = {
        "People Tracking": PeopleTracking,
        "Fall Detection": FallDetection,
        "Fight Detection": FightDetection
    }
    
    detector = detectors[feature]()
    method_name = f"detect_{feature.lower().replace(' ', '_')}"
    return getattr(detector, method_name)(video)

# Gradio Interface
interface = gr.Interface(
    fn=process_video,
    inputs=[
        gr.Dropdown(choices=["People Tracking", "Fall Detection", "Fight Detection"], label="Select Feature"),
        gr.Video(label="Upload Video")
    ],
    outputs=gr.Video(label="Processed Video"),
    title="YOLOv8 Multitask Video Processing"
)

if __name__ == "__main__":
    interface.launch()