Spaces:
Sleeping
Sleeping
File size: 5,810 Bytes
7d1f745 329c034 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import gradio as gr
import torch
import cv2
import numpy as np
import time
from ultralytics import YOLO
# Define People Tracking
class PeopleTracking:
def __init__(self, yolo_model_path="yolov8n.pt"):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model = YOLO(yolo_model_path).to(self.device)
def track_people(self, video_path):
cap = cv2.VideoCapture(video_path)
output_path = "output_tracking.mp4"
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
out = cv2.VideoWriter(output_path, fourcc, int(cap.get(cv2.CAP_PROP_FPS)),
(int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
results = self.model.track(frame, persist=True)
for result in results:
boxes = result.boxes.xyxy.cpu().numpy()
classes = result.boxes.cls.cpu().numpy()
ids = result.boxes.id.cpu().numpy() if hasattr(result.boxes, "id") else np.arange(len(boxes))
for box, cls, obj_id in zip(boxes, classes, ids):
if int(cls) == 0:
x1, y1, x2, y2 = map(int, box)
cv2.rectangle(frame, (x1, y1), (x2, y2), (255, 0, 0), 2)
cv2.putText(frame, f"ID {int(obj_id)}", (x1, y1 - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2)
out.write(frame)
cap.release()
out.release()
return output_path
# Define Fall Detection
class FallDetection:
def __init__(self, yolo_model_path="yolov8l.pt"):
self.model = YOLO(yolo_model_path)
def detect_fall(self, video_path):
cap = cv2.VideoCapture(video_path)
output_path = "output_fall.mp4"
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
out = cv2.VideoWriter(output_path, fourcc, int(cap.get(cv2.CAP_PROP_FPS)),
(int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
results = self.model(frame)
for result in results:
boxes = result.boxes.xyxy.cpu().numpy()
classes = result.boxes.cls.cpu().numpy()
for box, cls in zip(boxes, classes):
if int(cls) == 0:
x1, y1, x2, y2 = map(int, box)
width = x2 - x1
height = y2 - y1
aspect_ratio = width / height
if aspect_ratio > 0.55:
color = (0, 0, 255)
label = "FALL DETECTED"
else:
color = (0, 255, 0)
label = "Standing"
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2)
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
out.write(frame)
cap.release()
out.release()
return output_path
# Define Fight Detection
class FightDetection:
def __init__(self, yolo_model_path="yolov8n-pose.pt"):
self.model = YOLO(yolo_model_path).to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
def detect_fight(self, video_path):
cap = cv2.VideoCapture(video_path)
output_path = "output_fight.mp4"
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
out = cv2.VideoWriter(output_path, fourcc, int(cap.get(cv2.CAP_PROP_FPS)),
(int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
results = self.model.track(frame, persist=True)
for result in results:
keypoints = result.keypoints.xy.cpu().numpy() if result.keypoints else []
classes = result.boxes.cls.cpu().numpy() if result.boxes else []
for kp, cls in zip(keypoints, classes):
if int(cls) == 0:
x1, y1 = int(kp[0][0]), int(kp[0][1])
x2, y2 = int(kp[-1][0]), int(kp[-1][1])
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255), 2)
cv2.putText(frame, "FIGHT DETECTED", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
out.write(frame)
cap.release()
out.release()
return output_path
# Function to process video based on selected feature
def process_video(feature, video):
detectors = {
"People Tracking": PeopleTracking,
"Fall Detection": FallDetection,
"Fight Detection": FightDetection
}
detector = detectors[feature]()
method_name = f"detect_{feature.lower().replace(' ', '_')}"
return getattr(detector, method_name)(video)
# Gradio Interface
interface = gr.Interface(
fn=process_video,
inputs=[
gr.Dropdown(choices=["People Tracking", "Fall Detection", "Fight Detection"], label="Select Feature"),
gr.Video(label="Upload Video")
],
outputs=gr.Video(label="Processed Video"),
title="YOLOv8 Multitask Video Processing"
)
if __name__ == "__main__":
interface.launch()
|