Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -131,23 +131,18 @@ class PeopleTracking:
|
|
131 |
class FallDetection:
|
132 |
def __init__(self, yolo_model_path="yolov8l.pt"):
|
133 |
self.model_path = yolo_model_path
|
134 |
-
|
135 |
-
@spaces.GPU
|
136 |
def fall_detect(self, video_path):
|
137 |
try:
|
138 |
-
import torch
|
139 |
-
import os
|
140 |
-
import cv2
|
141 |
-
import numpy as np
|
142 |
-
from ultralytics import YOLO
|
143 |
-
|
144 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
145 |
-
|
|
|
146 |
if not os.path.exists(self.model_path):
|
147 |
model = YOLO("yolov8l.pt")
|
148 |
model.save(self.model_path)
|
149 |
else:
|
150 |
model = YOLO(self.model_path)
|
|
|
151 |
model.to(device)
|
152 |
|
153 |
cap = cv2.VideoCapture(video_path)
|
@@ -159,19 +154,29 @@ class FallDetection:
|
|
159 |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT) * 0.5)
|
160 |
output_path = "output_fall.mp4"
|
161 |
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height))
|
|
|
162 |
if not out.isOpened():
|
163 |
cap.release()
|
164 |
raise ValueError(f"❌ Failed to initialize video writer")
|
165 |
|
|
|
|
|
|
|
166 |
while cap.isOpened():
|
167 |
ret, frame = cap.read()
|
168 |
if not ret:
|
|
|
169 |
break
|
170 |
-
|
|
|
|
|
|
|
|
|
171 |
frame = cv2.resize(frame, (width, height))
|
172 |
|
173 |
-
#
|
174 |
-
|
|
|
175 |
|
176 |
for result in results:
|
177 |
boxes = result.boxes.xyxy.cpu().numpy()
|
@@ -180,9 +185,9 @@ class FallDetection:
|
|
180 |
for box, cls in zip(boxes, classes):
|
181 |
if int(cls) == 0:
|
182 |
x1, y1, x2, y2 = map(int, box)
|
183 |
-
|
184 |
-
|
185 |
-
aspect_ratio =
|
186 |
|
187 |
if aspect_ratio > 0.55:
|
188 |
color = (0, 0, 255)
|
@@ -196,14 +201,19 @@ class FallDetection:
|
|
196 |
|
197 |
out.write(frame)
|
198 |
|
|
|
199 |
cap.release()
|
200 |
out.release()
|
|
|
201 |
if not os.path.exists(output_path):
|
202 |
raise ValueError("❌ Processing failed")
|
|
|
203 |
return output_path
|
|
|
204 |
except Exception as e:
|
205 |
raise ValueError(f"Error in fall_detection: {str(e)}")
|
206 |
|
|
|
207 |
class FightDetection:
|
208 |
def __init__(self, yolo_model_path="yolov8n-pose.pt"):
|
209 |
self.model_path = yolo_model_path
|
|
|
131 |
class FallDetection:
|
132 |
def __init__(self, yolo_model_path="yolov8l.pt"):
|
133 |
self.model_path = yolo_model_path
|
134 |
+
spaces@GPU
|
|
|
135 |
def fall_detect(self, video_path):
|
136 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
138 |
+
|
139 |
+
# Load YOLOv8 model
|
140 |
if not os.path.exists(self.model_path):
|
141 |
model = YOLO("yolov8l.pt")
|
142 |
model.save(self.model_path)
|
143 |
else:
|
144 |
model = YOLO(self.model_path)
|
145 |
+
|
146 |
model.to(device)
|
147 |
|
148 |
cap = cv2.VideoCapture(video_path)
|
|
|
154 |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT) * 0.5)
|
155 |
output_path = "output_fall.mp4"
|
156 |
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height))
|
157 |
+
|
158 |
if not out.isOpened():
|
159 |
cap.release()
|
160 |
raise ValueError(f"❌ Failed to initialize video writer")
|
161 |
|
162 |
+
frame_skip = 3 # Process every 3rd frame to optimize performance
|
163 |
+
frame_count = 0
|
164 |
+
|
165 |
while cap.isOpened():
|
166 |
ret, frame = cap.read()
|
167 |
if not ret:
|
168 |
+
print("⚠️ No more frames to read. Exiting loop.")
|
169 |
break
|
170 |
+
|
171 |
+
frame_count += 1
|
172 |
+
if frame_count % frame_skip != 0:
|
173 |
+
continue # Skip frames to optimize performance
|
174 |
+
|
175 |
frame = cv2.resize(frame, (width, height))
|
176 |
|
177 |
+
# Ensure YOLO runs without unnecessary graph tracking
|
178 |
+
with torch.no_grad():
|
179 |
+
results = model.predict(frame, imgsz=640, device=device)
|
180 |
|
181 |
for result in results:
|
182 |
boxes = result.boxes.xyxy.cpu().numpy()
|
|
|
185 |
for box, cls in zip(boxes, classes):
|
186 |
if int(cls) == 0:
|
187 |
x1, y1, x2, y2 = map(int, box)
|
188 |
+
obj_width = x2 - x1
|
189 |
+
obj_height = y2 - y1
|
190 |
+
aspect_ratio = obj_width / obj_height if obj_height > 0 else float('inf')
|
191 |
|
192 |
if aspect_ratio > 0.55:
|
193 |
color = (0, 0, 255)
|
|
|
201 |
|
202 |
out.write(frame)
|
203 |
|
204 |
+
# ✅ Release resources after processing
|
205 |
cap.release()
|
206 |
out.release()
|
207 |
+
|
208 |
if not os.path.exists(output_path):
|
209 |
raise ValueError("❌ Processing failed")
|
210 |
+
|
211 |
return output_path
|
212 |
+
|
213 |
except Exception as e:
|
214 |
raise ValueError(f"Error in fall_detection: {str(e)}")
|
215 |
|
216 |
+
|
217 |
class FightDetection:
|
218 |
def __init__(self, yolo_model_path="yolov8n-pose.pt"):
|
219 |
self.model_path = yolo_model_path
|