Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,45 +6,35 @@ import time
|
|
6 |
from ultralytics import YOLO
|
7 |
import spaces
|
8 |
import os
|
9 |
-
import logging
|
10 |
-
@spaces.GPU
|
11 |
|
12 |
class CrowdDetection:
|
13 |
def __init__(self, model_path="yolov8n.pt"):
|
14 |
-
|
15 |
-
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
-
try:
|
17 |
-
if not os.path.exists(model_path):
|
18 |
-
logger.info(f"Model {model_path} not found, downloading...")
|
19 |
-
self.model = YOLO("yolov8n.pt") # Downloads if not present
|
20 |
-
self.model.save(model_path)
|
21 |
-
else:
|
22 |
-
self.model = YOLO(model_path)
|
23 |
-
self.model.to(self.device)
|
24 |
-
logger.info("CrowdDetection model loaded successfully")
|
25 |
-
except Exception as e:
|
26 |
-
logger.error(f"Failed to initialize model: {str(e)}")
|
27 |
-
raise
|
28 |
|
|
|
29 |
def detect_crowd(self, video_path):
|
30 |
-
logger.info(f"Processing video for crowd detection: {video_path}")
|
31 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
cap = cv2.VideoCapture(video_path)
|
33 |
if not cap.isOpened():
|
34 |
-
logger.error(f"Failed to open video: {video_path}")
|
35 |
raise ValueError(f"β Failed to open video: {video_path}")
|
36 |
|
37 |
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
38 |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
39 |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
40 |
-
logger.debug(f"Video specs - FPS: {fps}, Width: {width}, Height: {height}")
|
41 |
|
42 |
output_path = "output_crowd.mp4"
|
43 |
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
44 |
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
45 |
if not out.isOpened():
|
46 |
cap.release()
|
47 |
-
logger.error(f"Failed to initialize video writer for {output_path}")
|
48 |
raise ValueError(f"β Failed to initialize video writer")
|
49 |
|
50 |
CROWD_THRESHOLD = 10
|
@@ -56,9 +46,8 @@ class CrowdDetection:
|
|
56 |
break
|
57 |
frame_count += 1
|
58 |
|
59 |
-
results =
|
60 |
person_count = sum(1 for result in results for cls in result.boxes.cls.cpu().numpy() if int(cls) == 0)
|
61 |
-
logger.debug(f"Frame {frame_count}: Detected {person_count} people")
|
62 |
|
63 |
for result in results:
|
64 |
boxes = result.boxes.xyxy.cpu().numpy()
|
@@ -77,28 +66,26 @@ class CrowdDetection:
|
|
77 |
cap.release()
|
78 |
out.release()
|
79 |
if frame_count == 0 or not os.path.exists(output_path):
|
80 |
-
logger.error(f"Processing failed: Frames processed: {frame_count}, Output exists: {os.path.exists(output_path)}")
|
81 |
raise ValueError("β Processing failed: No frames processed or output not created")
|
82 |
-
logger.info(f"Crowd detection completed, output saved to: {output_path}")
|
83 |
return output_path
|
84 |
except Exception as e:
|
85 |
-
|
86 |
-
raise
|
87 |
|
88 |
class PeopleTracking:
|
89 |
def __init__(self, yolo_model_path="yolov8n.pt"):
|
90 |
-
|
91 |
-
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
92 |
-
if not os.path.exists(yolo_model_path):
|
93 |
-
self.model = YOLO("yolov8n.pt")
|
94 |
-
self.model.save(yolo_model_path)
|
95 |
-
else:
|
96 |
-
self.model = YOLO(yolo_model_path)
|
97 |
-
self.model.to(self.device)
|
98 |
|
|
|
99 |
def track_people(self, video_path):
|
100 |
-
logger.info(f"Tracking people in video: {video_path}")
|
101 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
cap = cv2.VideoCapture(video_path)
|
103 |
if not cap.isOpened():
|
104 |
raise ValueError(f"β Failed to open video: {video_path}")
|
@@ -117,7 +104,7 @@ class PeopleTracking:
|
|
117 |
if not ret:
|
118 |
break
|
119 |
|
120 |
-
results =
|
121 |
for result in results:
|
122 |
boxes = result.boxes.xyxy.cpu().numpy()
|
123 |
classes = result.boxes.cls.cpu().numpy()
|
@@ -137,23 +124,23 @@ class PeopleTracking:
|
|
137 |
raise ValueError("β Processing failed")
|
138 |
return output_path
|
139 |
except Exception as e:
|
140 |
-
|
141 |
-
raise
|
142 |
|
143 |
class FallDetection:
|
144 |
def __init__(self, yolo_model_path="yolov8l.pt"):
|
145 |
-
|
146 |
-
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
147 |
-
if not os.path.exists(yolo_model_path):
|
148 |
-
self.model = YOLO("yolov8l.pt")
|
149 |
-
self.model.save(yolo_model_path)
|
150 |
-
else:
|
151 |
-
self.model = YOLO(yolo_model_path)
|
152 |
-
self.model.to(self.device)
|
153 |
|
|
|
154 |
def detect_fall(self, video_path):
|
155 |
-
logger.info(f"Detecting falls in video: {video_path}")
|
156 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
cap = cv2.VideoCapture(video_path)
|
158 |
if not cap.isOpened():
|
159 |
raise ValueError(f"β Failed to open video: {video_path}")
|
@@ -172,7 +159,7 @@ class FallDetection:
|
|
172 |
if not ret:
|
173 |
break
|
174 |
|
175 |
-
results =
|
176 |
for result in results:
|
177 |
boxes = result.boxes.xyxy.cpu().numpy()
|
178 |
classes = result.boxes.cls.cpu().numpy()
|
@@ -202,23 +189,23 @@ class FallDetection:
|
|
202 |
raise ValueError("β Processing failed")
|
203 |
return output_path
|
204 |
except Exception as e:
|
205 |
-
|
206 |
-
raise
|
207 |
|
208 |
class FightDetection:
|
209 |
def __init__(self, yolo_model_path="yolov8n-pose.pt"):
|
210 |
-
|
211 |
-
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
212 |
-
if not os.path.exists(yolo_model_path):
|
213 |
-
self.model = YOLO("yolov8n-pose.pt")
|
214 |
-
self.model.save(yolo_model_path)
|
215 |
-
else:
|
216 |
-
self.model = YOLO(yolo_model_path)
|
217 |
-
self.model.to(self.device)
|
218 |
|
|
|
219 |
def detect_fight(self, video_path):
|
220 |
-
logger.info(f"Detecting fights in video: {video_path}")
|
221 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
cap = cv2.VideoCapture(video_path)
|
223 |
if not cap.isOpened():
|
224 |
raise ValueError(f"β Failed to open video: {video_path}")
|
@@ -237,7 +224,7 @@ class FightDetection:
|
|
237 |
if not ret:
|
238 |
break
|
239 |
|
240 |
-
results =
|
241 |
fight_detected = False
|
242 |
person_count = 0
|
243 |
|
@@ -267,8 +254,7 @@ class FightDetection:
|
|
267 |
raise ValueError("β Processing failed")
|
268 |
return output_path
|
269 |
except Exception as e:
|
270 |
-
|
271 |
-
raise
|
272 |
|
273 |
# Unified processing function with status output
|
274 |
def process_video(feature, video):
|
@@ -284,7 +270,6 @@ def process_video(feature, video):
|
|
284 |
output_path = getattr(detector, method_name)(video)
|
285 |
return f"{feature} completed successfully", output_path
|
286 |
except Exception as e:
|
287 |
-
logger.error(f"Error processing video with {feature}: {str(e)}")
|
288 |
return f"Error: {str(e)}", None
|
289 |
|
290 |
# Gradio Interface with dual outputs
|
|
|
6 |
from ultralytics import YOLO
|
7 |
import spaces
|
8 |
import os
|
|
|
|
|
9 |
|
10 |
class CrowdDetection:
|
11 |
def __init__(self, model_path="yolov8n.pt"):
|
12 |
+
self.model_path = model_path # Store path, load model later
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
@spaces.GPU
|
15 |
def detect_crowd(self, video_path):
|
|
|
16 |
try:
|
17 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
+
if not os.path.exists(self.model_path):
|
19 |
+
model = YOLO("yolov8n.pt")
|
20 |
+
model.save(self.model_path)
|
21 |
+
else:
|
22 |
+
model = YOLO(self.model_path)
|
23 |
+
model.to(device)
|
24 |
+
|
25 |
cap = cv2.VideoCapture(video_path)
|
26 |
if not cap.isOpened():
|
|
|
27 |
raise ValueError(f"β Failed to open video: {video_path}")
|
28 |
|
29 |
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
30 |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
31 |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
|
|
32 |
|
33 |
output_path = "output_crowd.mp4"
|
34 |
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
35 |
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
36 |
if not out.isOpened():
|
37 |
cap.release()
|
|
|
38 |
raise ValueError(f"β Failed to initialize video writer")
|
39 |
|
40 |
CROWD_THRESHOLD = 10
|
|
|
46 |
break
|
47 |
frame_count += 1
|
48 |
|
49 |
+
results = model(frame)
|
50 |
person_count = sum(1 for result in results for cls in result.boxes.cls.cpu().numpy() if int(cls) == 0)
|
|
|
51 |
|
52 |
for result in results:
|
53 |
boxes = result.boxes.xyxy.cpu().numpy()
|
|
|
66 |
cap.release()
|
67 |
out.release()
|
68 |
if frame_count == 0 or not os.path.exists(output_path):
|
|
|
69 |
raise ValueError("β Processing failed: No frames processed or output not created")
|
|
|
70 |
return output_path
|
71 |
except Exception as e:
|
72 |
+
raise ValueError(f"Error in detect_crowd: {str(e)}")
|
|
|
73 |
|
74 |
class PeopleTracking:
|
75 |
def __init__(self, yolo_model_path="yolov8n.pt"):
|
76 |
+
self.model_path = yolo_model_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
+
@spaces.GPU
|
79 |
def track_people(self, video_path):
|
|
|
80 |
try:
|
81 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
82 |
+
if not os.path.exists(self.model_path):
|
83 |
+
model = YOLO("yolov8n.pt")
|
84 |
+
model.save(self.model_path)
|
85 |
+
else:
|
86 |
+
model = YOLO(self.model_path)
|
87 |
+
model.to(device)
|
88 |
+
|
89 |
cap = cv2.VideoCapture(video_path)
|
90 |
if not cap.isOpened():
|
91 |
raise ValueError(f"β Failed to open video: {video_path}")
|
|
|
104 |
if not ret:
|
105 |
break
|
106 |
|
107 |
+
results = model.track(frame, persist=True)
|
108 |
for result in results:
|
109 |
boxes = result.boxes.xyxy.cpu().numpy()
|
110 |
classes = result.boxes.cls.cpu().numpy()
|
|
|
124 |
raise ValueError("β Processing failed")
|
125 |
return output_path
|
126 |
except Exception as e:
|
127 |
+
raise ValueError(f"Error in track_people: {str(e)}")
|
|
|
128 |
|
129 |
class FallDetection:
|
130 |
def __init__(self, yolo_model_path="yolov8l.pt"):
|
131 |
+
self.model_path = yolo_model_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
+
@spaces.GPU
|
134 |
def detect_fall(self, video_path):
|
|
|
135 |
try:
|
136 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
137 |
+
if not os.path.exists(self.model_path):
|
138 |
+
model = YOLO("yolov8l.pt")
|
139 |
+
model.save(self.model_path)
|
140 |
+
else:
|
141 |
+
model = YOLO(self.model_path)
|
142 |
+
model.to(device)
|
143 |
+
|
144 |
cap = cv2.VideoCapture(video_path)
|
145 |
if not cap.isOpened():
|
146 |
raise ValueError(f"β Failed to open video: {video_path}")
|
|
|
159 |
if not ret:
|
160 |
break
|
161 |
|
162 |
+
results = model(frame)
|
163 |
for result in results:
|
164 |
boxes = result.boxes.xyxy.cpu().numpy()
|
165 |
classes = result.boxes.cls.cpu().numpy()
|
|
|
189 |
raise ValueError("β Processing failed")
|
190 |
return output_path
|
191 |
except Exception as e:
|
192 |
+
raise ValueError(f"Error in detect_fall: {str(e)}")
|
|
|
193 |
|
194 |
class FightDetection:
|
195 |
def __init__(self, yolo_model_path="yolov8n-pose.pt"):
|
196 |
+
self.model_path = yolo_model_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
|
198 |
+
@spaces.GPU
|
199 |
def detect_fight(self, video_path):
|
|
|
200 |
try:
|
201 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
202 |
+
if not os.path.exists(self.model_path):
|
203 |
+
model = YOLO("yolov8n-pose.pt")
|
204 |
+
model.save(self.model_path)
|
205 |
+
else:
|
206 |
+
model = YOLO(self.model_path)
|
207 |
+
model.to(device)
|
208 |
+
|
209 |
cap = cv2.VideoCapture(video_path)
|
210 |
if not cap.isOpened():
|
211 |
raise ValueError(f"β Failed to open video: {video_path}")
|
|
|
224 |
if not ret:
|
225 |
break
|
226 |
|
227 |
+
results = model.track(frame, persist=True)
|
228 |
fight_detected = False
|
229 |
person_count = 0
|
230 |
|
|
|
254 |
raise ValueError("β Processing failed")
|
255 |
return output_path
|
256 |
except Exception as e:
|
257 |
+
raise ValueError(f"Error in detect_fight: {str(e)}")
|
|
|
258 |
|
259 |
# Unified processing function with status output
|
260 |
def process_video(feature, video):
|
|
|
270 |
output_path = getattr(detector, method_name)(video)
|
271 |
return f"{feature} completed successfully", output_path
|
272 |
except Exception as e:
|
|
|
273 |
return f"Error: {str(e)}", None
|
274 |
|
275 |
# Gradio Interface with dual outputs
|