Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,14 +8,19 @@ import spaces
|
|
8 |
|
9 |
@spaces.GPU
|
10 |
|
|
|
|
|
|
|
|
|
|
|
11 |
class CrowdDetection:
|
12 |
-
def __init__(self, model_path="yolov8n.pt"
|
|
|
13 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
-
|
15 |
-
self.model = YOLO(model_path).to(self.device)
|
16 |
-
self.crowd_threshold = crowd_threshold
|
17 |
|
18 |
def detect_crowd(self, video_path):
|
|
|
19 |
cap = cv2.VideoCapture(video_path)
|
20 |
if not cap.isOpened():
|
21 |
raise ValueError(f"❌ Failed to open video: {video_path}")
|
@@ -23,38 +28,47 @@ class CrowdDetection:
|
|
23 |
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
24 |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
25 |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
26 |
-
print(f"🎥 Video details - FPS: {fps}, Width: {width}, Height: {height}")
|
27 |
|
28 |
output_path = "output_crowd.mp4"
|
29 |
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
30 |
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
31 |
|
|
|
32 |
frame_count = 0
|
33 |
|
34 |
while cap.isOpened():
|
35 |
ret, frame = cap.read()
|
36 |
if not ret:
|
37 |
-
break
|
38 |
|
39 |
frame_count += 1
|
|
|
|
|
40 |
results = self.model(frame)
|
41 |
-
person_count = 0
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
for result in results:
|
44 |
boxes = result.boxes.xyxy.cpu().numpy()
|
45 |
classes = result.boxes.cls.cpu().numpy()
|
46 |
|
47 |
for box, cls in zip(boxes, classes):
|
48 |
-
if int(cls) == 0: #
|
49 |
-
person_count += 1
|
50 |
x1, y1, x2, y2 = map(int, box)
|
51 |
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
52 |
cv2.putText(frame, "Person", (x1, y1 - 10),
|
53 |
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
54 |
|
55 |
-
|
|
|
56 |
cv2.putText(frame, alert_text, (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1,
|
57 |
-
(0, 0, 255) if person_count >
|
|
|
58 |
out.write(frame)
|
59 |
|
60 |
cap.release()
|
@@ -66,8 +80,9 @@ class CrowdDetection:
|
|
66 |
if not os.path.exists(output_path):
|
67 |
raise FileNotFoundError(f"❌ Output video not found: {output_path}")
|
68 |
|
69 |
-
|
70 |
-
|
|
|
71 |
|
72 |
class PeopleTracking:
|
73 |
def __init__(self, yolo_model_path="yolov8n.pt"):
|
|
|
8 |
|
9 |
@spaces.GPU
|
10 |
|
11 |
+
import cv2
|
12 |
+
import torch
|
13 |
+
import os
|
14 |
+
from ultralytics import YOLO
|
15 |
+
|
16 |
class CrowdDetection:
|
17 |
+
def __init__(self, model_path="yolov8n.pt"):
|
18 |
+
"""Initialize the YOLO model once to avoid PicklingError."""
|
19 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
20 |
+
self.model = YOLO(model_path).to(self.device) # Load model once
|
|
|
|
|
21 |
|
22 |
def detect_crowd(self, video_path):
|
23 |
+
"""Process video using YOLOv8 for crowd detection."""
|
24 |
cap = cv2.VideoCapture(video_path)
|
25 |
if not cap.isOpened():
|
26 |
raise ValueError(f"❌ Failed to open video: {video_path}")
|
|
|
28 |
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
29 |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
30 |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
|
|
31 |
|
32 |
output_path = "output_crowd.mp4"
|
33 |
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
34 |
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
35 |
|
36 |
+
CROWD_THRESHOLD = 10
|
37 |
frame_count = 0
|
38 |
|
39 |
while cap.isOpened():
|
40 |
ret, frame = cap.read()
|
41 |
if not ret:
|
42 |
+
break # End of video
|
43 |
|
44 |
frame_count += 1
|
45 |
+
|
46 |
+
# Run YOLO inference on the frame
|
47 |
results = self.model(frame)
|
|
|
48 |
|
49 |
+
# Count detected persons
|
50 |
+
person_count = sum(
|
51 |
+
1 for result in results
|
52 |
+
for cls in result.boxes.cls.cpu().numpy() if int(cls) == 0
|
53 |
+
)
|
54 |
+
|
55 |
+
# Draw bounding boxes
|
56 |
for result in results:
|
57 |
boxes = result.boxes.xyxy.cpu().numpy()
|
58 |
classes = result.boxes.cls.cpu().numpy()
|
59 |
|
60 |
for box, cls in zip(boxes, classes):
|
61 |
+
if int(cls) == 0: # Person class
|
|
|
62 |
x1, y1, x2, y2 = map(int, box)
|
63 |
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
64 |
cv2.putText(frame, "Person", (x1, y1 - 10),
|
65 |
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
66 |
|
67 |
+
# Display count on frame
|
68 |
+
alert_text = "Crowd Alert!" if person_count > CROWD_THRESHOLD else f"People: {person_count}"
|
69 |
cv2.putText(frame, alert_text, (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1,
|
70 |
+
(0, 0, 255) if person_count > CROWD_THRESHOLD else (0, 255, 0), 2)
|
71 |
+
|
72 |
out.write(frame)
|
73 |
|
74 |
cap.release()
|
|
|
80 |
if not os.path.exists(output_path):
|
81 |
raise FileNotFoundError(f"❌ Output video not found: {output_path}")
|
82 |
|
83 |
+
return output_path # Return file path instead of video object
|
84 |
+
|
85 |
+
|
86 |
|
87 |
class PeopleTracking:
|
88 |
def __init__(self, yolo_model_path="yolov8n.pt"):
|