Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -12,8 +12,16 @@ class CrowdDetection:
|
|
12 |
def __init__(self, model_path="yolov8n.pt"):
|
13 |
"""Initialize the YOLO model once to avoid PicklingError."""
|
14 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
|
|
17 |
def detect_crowd(self, video_path):
|
18 |
"""Process video using YOLOv8 for crowd detection."""
|
19 |
cap = cv2.VideoCapture(video_path)
|
@@ -28,6 +36,10 @@ class CrowdDetection:
|
|
28 |
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
29 |
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
30 |
|
|
|
|
|
|
|
|
|
31 |
CROWD_THRESHOLD = 10
|
32 |
frame_count = 0
|
33 |
|
@@ -75,8 +87,37 @@ class CrowdDetection:
|
|
75 |
if not os.path.exists(output_path):
|
76 |
raise FileNotFoundError(f"❌ Output video not found: {output_path}")
|
77 |
|
78 |
-
return output_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
|
|
80 |
|
81 |
|
82 |
class PeopleTracking:
|
|
|
12 |
def __init__(self, model_path="yolov8n.pt"):
|
13 |
"""Initialize the YOLO model once to avoid PicklingError."""
|
14 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
+
if not os.path.exists(model_path):
|
16 |
+
# Download the model if not present
|
17 |
+
from ultralytics import YOLO
|
18 |
+
self.model = YOLO("yolov8n.pt") # This downloads the model automatically
|
19 |
+
self.model.save(model_path) # Save locally
|
20 |
+
else:
|
21 |
+
self.model = YOLO(model_path)
|
22 |
+
self.model.to(self.device)
|
23 |
|
24 |
+
@spaces.GPU
|
25 |
def detect_crowd(self, video_path):
|
26 |
"""Process video using YOLOv8 for crowd detection."""
|
27 |
cap = cv2.VideoCapture(video_path)
|
|
|
36 |
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
37 |
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
38 |
|
39 |
+
if not out.isOpened():
|
40 |
+
cap.release()
|
41 |
+
raise ValueError(f"❌ Failed to initialize video writer for {output_path}")
|
42 |
+
|
43 |
CROWD_THRESHOLD = 10
|
44 |
frame_count = 0
|
45 |
|
|
|
87 |
if not os.path.exists(output_path):
|
88 |
raise FileNotFoundError(f"❌ Output video not found: {output_path}")
|
89 |
|
90 |
+
return output_path
|
91 |
+
|
92 |
+
# Define Gradio interface function
|
93 |
+
def process_video(video):
|
94 |
+
try:
|
95 |
+
detector = CrowdDetection() # Instantiate inside to avoid pickling
|
96 |
+
output_path = detector.detect_crowd(video)
|
97 |
+
return "Crowd detection complete!", output_path
|
98 |
+
except Exception as e:
|
99 |
+
return f"Error: {str(e)}", None
|
100 |
+
|
101 |
+
# Create Gradio interface
|
102 |
+
with gr.Blocks() as demo:
|
103 |
+
gr.Markdown("# Crowd Detection with YOLOv8")
|
104 |
+
gr.Markdown("Upload a video to detect people and get crowd alerts (threshold: 10 people)")
|
105 |
+
|
106 |
+
with gr.Row():
|
107 |
+
with gr.Column():
|
108 |
+
video_input = gr.Video(label="Upload Video")
|
109 |
+
submit_btn = gr.Button("Detect Crowd")
|
110 |
+
with gr.Column():
|
111 |
+
status_output = gr.Textbox(label="Status")
|
112 |
+
video_output = gr.Video(label="Result")
|
113 |
+
|
114 |
+
submit_btn.click(
|
115 |
+
fn=process_video,
|
116 |
+
inputs=[video_input],
|
117 |
+
outputs=[status_output, video_output]
|
118 |
+
)
|
119 |
|
120 |
+
demo.launch(debug=True)
|
121 |
|
122 |
|
123 |
class PeopleTracking:
|