Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,11 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
import cv2
|
|
|
4 |
from ultralytics import YOLO
|
5 |
-
import spaces
|
6 |
-
@spaces.GPU
|
7 |
|
|
|
8 |
|
9 |
class CrowdDetection:
|
10 |
def __init__(self, yolo_model_path="yolov8n.pt", crowd_threshold=10):
|
@@ -30,9 +31,16 @@ class CrowdDetection:
|
|
30 |
raise ValueError("YOLO model failed to load")
|
31 |
|
32 |
cap = cv2.VideoCapture(video_path)
|
|
|
|
|
|
|
|
|
|
|
33 |
output_path = "output_crowd.mp4"
|
|
|
|
|
34 |
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
35 |
-
out = cv2.VideoWriter(
|
36 |
(int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))))
|
37 |
|
38 |
while cap.isOpened():
|
@@ -64,16 +72,29 @@ class CrowdDetection:
|
|
64 |
|
65 |
cap.release()
|
66 |
out.release()
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
def process_video(video):
|
70 |
try:
|
|
|
|
|
71 |
detector = CrowdDetection()
|
72 |
output_video = detector.detect_crowd(video)
|
|
|
|
|
|
|
|
|
|
|
73 |
return output_video
|
74 |
except Exception as e:
|
75 |
print(f"Video processing error: {e}")
|
76 |
-
return None
|
77 |
|
78 |
# Gradio Interface for Hugging Face Spaces
|
79 |
interface = gr.Interface(
|
@@ -83,6 +104,5 @@ interface = gr.Interface(
|
|
83 |
title="Crowd Detection using YOLOv8"
|
84 |
)
|
85 |
|
86 |
-
# Remove share=True for Hugging Face Spaces
|
87 |
if __name__ == "__main__":
|
88 |
-
interface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
import cv2
|
4 |
+
import os
|
5 |
from ultralytics import YOLO
|
6 |
+
import spaces
|
|
|
7 |
|
8 |
+
@spaces.GPU # Ensures GPU is allocated for this function
|
9 |
|
10 |
class CrowdDetection:
|
11 |
def __init__(self, yolo_model_path="yolov8n.pt", crowd_threshold=10):
|
|
|
31 |
raise ValueError("YOLO model failed to load")
|
32 |
|
33 |
cap = cv2.VideoCapture(video_path)
|
34 |
+
|
35 |
+
# Ensure video is opened successfully
|
36 |
+
if not cap.isOpened():
|
37 |
+
raise ValueError(f"Failed to open video: {video_path}")
|
38 |
+
|
39 |
output_path = "output_crowd.mp4"
|
40 |
+
output_full_path = os.path.abspath(output_path) # Convert to absolute path
|
41 |
+
|
42 |
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
43 |
+
out = cv2.VideoWriter(output_full_path, fourcc, int(cap.get(cv2.CAP_PROP_FPS)),
|
44 |
(int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))))
|
45 |
|
46 |
while cap.isOpened():
|
|
|
72 |
|
73 |
cap.release()
|
74 |
out.release()
|
75 |
+
|
76 |
+
# Ensure output file exists before returning
|
77 |
+
if not os.path.exists(output_full_path):
|
78 |
+
raise FileNotFoundError(f"Output video not found: {output_full_path}")
|
79 |
+
|
80 |
+
print(f"Processed video saved at: {output_full_path}")
|
81 |
+
return output_full_path
|
82 |
|
83 |
def process_video(video):
|
84 |
try:
|
85 |
+
print(f"Received video: {video}")
|
86 |
+
|
87 |
detector = CrowdDetection()
|
88 |
output_video = detector.detect_crowd(video)
|
89 |
+
|
90 |
+
if not os.path.exists(output_video): # Ensure output file exists
|
91 |
+
raise FileNotFoundError(f"Output video does not exist: {output_video}")
|
92 |
+
|
93 |
+
print(f"Returning processed video: {output_video}")
|
94 |
return output_video
|
95 |
except Exception as e:
|
96 |
print(f"Video processing error: {e}")
|
97 |
+
return None # Prevent crashing the app
|
98 |
|
99 |
# Gradio Interface for Hugging Face Spaces
|
100 |
interface = gr.Interface(
|
|
|
104 |
title="Crowd Detection using YOLOv8"
|
105 |
)
|
106 |
|
|
|
107 |
if __name__ == "__main__":
|
108 |
+
interface.launch()
|