File size: 5,146 Bytes
b7df221
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63b33e8
b7df221
 
 
 
 
 
 
 
 
d6d3399
b7df221
 
 
 
 
 
 
 
 
 
 
2364ca2
d6d3399
b7df221
 
 
 
 
 
d6d3399
 
 
 
 
 
b7df221
 
 
 
 
 
 
 
d6d3399
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import supervision as sv
import gradio as gr
from ultralytics import YOLO
import sahi
import numpy as np 



# Images
sahi.utils.file.download_from_url(
    "https://transform.roboflow.com/bViBvBXkjUWzz4lYXwtoVTE2gpO2/210fe71d15bb416b0dfde415686da572/thumb.jpg",
    "wh1.jpg",
)
sahi.utils.file.download_from_url(
    "https://transform.roboflow.com/bViBvBXkjUWzz4lYXwtoVTE2gpO2/6731f1ac3e966e90ccc0057c86b42c74/thumb.jpg",
    "wh2.jpg",
)
sahi.utils.file.download_from_url(
    "https://transform.roboflow.com/bViBvBXkjUWzz4lYXwtoVTE2gpO2/ba9fc3cc24849c0408d5e2ddd4a4a4ed/thumb.jpg",
    "wh3.jpg",
)




annotatorbbox = sv.BoxAnnotator()
annotatormask=sv.MaskAnnotator()


def yolov8_inference(
    image: gr.inputs.Image = None,
    conf_threshold: gr.inputs.Slider = 0.25,
    iou_threshold: gr.inputs.Slider = 0.45,
):


    image=image[:, :, ::-1].astype(np.uint8)
    model = YOLO("https://huggingface.co/spaces/devisionx/Fourth_demo/blob/main/best.pt")
    results = model(image,imgsz=640)[0]
    image=image[:, :, ::-1].astype(np.uint8)
    detections = sv.Detections.from_yolov8(results)
    annotated_image = annotatorbbox.annotate(scene=image, detections=detections)




    return annotated_image
'''
image_input = gr.inputs.Image()  # Adjust the shape according to your requirements

inputs = [
    gr.inputs.Image(label="Input Image"),
    gr.Slider(
        minimum=0.0, maximum=1.0, value=0.25, step=0.05, label="Confidence Threshold"
    ),
    gr.Slider(minimum=0.0, maximum=1.0, value=0.45, step=0.05, label="IOU Threshold"),
]

outputs = gr.Image(type="filepath", label="Output Image")
title = "Wheel Segmentation Demo"
'''
import os
examples = [
    ["wh1.jpg", 0.6, 0.45],
    ["wh2.jpg", 0.25, 0.45],
    ["wh3.jpg", 0.25, 0.45],
]
outputs_images = [
    ["1.jpg"], # First example: an output image for the cat example
    ["2.jpg"] # Second example: an output image for the dog example
    ,["3.jpg"]
]
'''
demo_app = gr.Interface(examples=examples,
    fn=yolov8_inference,
    inputs=inputs,
    outputs=outputs,
    title=title,
    cache_examples=True,
    theme="default",
)
'''
readme_html = """
<html>
<head>
    <style>
        .description {
            margin: 20px;
            padding: 10px;
            border: 1px solid #ccc;
        }
    </style>
</head>
<body>
    <div class="description">
        <p><strong>More details:</strong></p>
        <p> We present a demo for performing object segmentation with training a Yolov8-seg on wheel Image dataset. The model was trained on 696 training images and validated on 199 images.</p>
        <p><strong>Usage:</strong></p>
        <p>You can upload wheel Image images, and the demo will provide you with your segmented image.</p>
        <p><strong>Dataset:</strong></p>
        <p>This dataset comprises a total of 994 images, which are divided into three distinct sets for various purposes:</p>
        <ul>
            <li><strong>Training Set:</strong> It includes 696 images and is intended for training the model.</li>
            <li><strong>Validation Set:</strong> There are 199 images in the validation set, which is used for optimizing model parameters during development.</li>
            <li><strong>Test Set:</strong> This set consists of 99 images and serves as a separate evaluation dataset to assess the performance of trained models.</li>
        </ul>
        <p><strong>License:</strong> This dataset is made available under the Creative Commons Attribution 4.0 International License (CC BY 4.0).</p>
        <p>To access and download this dataset, please follow this link: <a href=" https://universe.roboflow.com/project-wce7s/1000_seg_wheel" target="_blank">Dataset Download</a></p>
        
        
</body>
</html>
"""





with gr.Blocks() as demo:
    gr.Markdown(
        """
        <div style="text-align: center;">
            <h1>Wheel Segmentation Demo</h1>
            Powered by <a href="https://Tuba.ai">Tuba</a>
        </div>
        """
    )


    # Define the input components and add them to the layout
    with gr.Row():
        image_input = gr.inputs.Image()
        
        
        outputs = gr.Image(type="filepath", label="Output Image")
        
    # Define the output component and add it to the layout
    with gr.Row():
        conf_slider=gr.Slider(minimum=0.0, maximum=1.0, value=0.25, step=0.05, label="Confidence Threshold" )
    with gr.Row():
        IOU_Slider=gr.Slider(minimum=0.0, maximum=1.0, value=0.45, step=0.05, label="IOU Threshold")
    
    
    

    button = gr.Button("Run")
    
        
    # Define the event listener that connects the input and output components and triggers the function
    button.click(fn=yolov8_inference, inputs=[image_input, conf_slider,IOU_Slider], outputs=outputs, api_name="yolov8_inference")
    
    gr.Examples(
            fn=yolov8_inference,
            examples=examples,
            inputs=[image_input, conf_slider,IOU_Slider],
            outputs=[outputs]
        )
    # gr.Examples(inputs=examples, outputs=outputs_images)
    # Add the description below the layout
    gr.Markdown(readme_html)
# Launch the app
demo.launch(share=False)