Spaces:
Sleeping
Sleeping
import supervision as sv | |
import gradio as gr | |
from ultralytics import YOLO | |
import sahi | |
import numpy as np | |
# Images | |
sahi.utils.file.download_from_url( | |
"https://transform.roboflow.com/bViBvBXkjUWzz4lYXwtoVTE2gpO2/210fe71d15bb416b0dfde415686da572/thumb.jpg", | |
"wh1.jpg", | |
) | |
sahi.utils.file.download_from_url( | |
"https://transform.roboflow.com/bViBvBXkjUWzz4lYXwtoVTE2gpO2/6731f1ac3e966e90ccc0057c86b42c74/thumb.jpg", | |
"wh2.jpg", | |
) | |
sahi.utils.file.download_from_url( | |
"https://transform.roboflow.com/bViBvBXkjUWzz4lYXwtoVTE2gpO2/ba9fc3cc24849c0408d5e2ddd4a4a4ed/thumb.jpg", | |
"wh3.jpg", | |
) | |
annotatorbbox = sv.BoxAnnotator() | |
annotatormask=sv.MaskAnnotator() | |
def yolov8_inference( | |
image: gr.inputs.Image = None, | |
conf_threshold: gr.inputs.Slider = 0.25, | |
iou_threshold: gr.inputs.Slider = 0.45, | |
): | |
image=image[:, :, ::-1].astype(np.uint8) | |
model = YOLO("https://huggingface.co/spaces/devisionx/Fourth_demo/blob/main/best.pt") | |
results = model(image,imgsz=640)[0] | |
image=image[:, :, ::-1].astype(np.uint8) | |
detections = sv.Detections.from_yolov8(results) | |
annotated_image = annotatorbbox.annotate(scene=image, detections=detections) | |
return annotated_image | |
image_input = gr.inputs.Image() # Adjust the shape according to your requirements | |
inputs = [ | |
gr.inputs.Image(label="Input Image"), | |
gr.Slider( | |
minimum=0.0, maximum=1.0, value=0.25, step=0.05, label="Confidence Threshold" | |
), | |
gr.Slider(minimum=0.0, maximum=1.0, value=0.45, step=0.05, label="IOU Threshold"), | |
] | |
outputs = gr.Image(type="filepath", label="Output Image") | |
title = "Ultralytics YOLOv8 Segmentation Demo" | |
import os | |
examples = [ | |
["wh1.jpg", 0.6, 0.45], | |
["wh2.jpg", 0.25, 0.45], | |
["wh3.jpg", 0.25, 0.45], | |
] | |
demo_app = gr.Interface(examples=examples, | |
fn=yolov8_inference, | |
inputs=inputs, | |
outputs=outputs, | |
title=title, | |
cache_examples=True, | |
theme="default", | |
) | |
demo_app.launch(debug=False, enable_queue=True) |