File size: 6,844 Bytes
6873ca3 ff9dd4b 6873ca3 ff9dd4b 6027eca 8790d1f ff9dd4b 8790d1f 6873ca3 a80efbb 6873ca3 2b1561b 6873ca3 a80efbb 6873ca3 a80efbb 6873ca3 8cc4adb ff9dd4b ef33cf7 6027eca 6873ca3 ff9dd4b 6873ca3 ff9dd4b 6873ca3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import base64
import io
import cv2
import requests
import json
import gradio as gr
import os
from PIL import Image
import numpy as np
from PIL import ImageOps
# Accessing a specific environment variable
api_key = os.environ.get('devisionx')
# Checking if the environment variable exists
if not api_key:
print("devisionx environment variable is not set.")
exit()
# Define a function to call the API and get the results
def base64str_to_PILImage(base64str):
base64_img_bytes = base64str.encode('utf-8')
base64bytes = base64.b64decode(base64_img_bytes)
bytesObj = io.BytesIO(base64bytes)
return ImageOps.exif_transpose(Image.open(bytesObj))
def get_results(image, prompt,segment):
threshold = 0.5
# Convert the NumPy array to PIL image
image = Image.fromarray(image)
# Convert the image to base64 string
with io.BytesIO() as output:
image.save(output, format="JPEG")
base64str = base64.b64encode(output.getvalue()).decode("utf-8")
# Prepare the payload (Adjust this part according to the API requirements)
#payload = json.dumps({"base64str": base64str, "classes": prompt})
task_="0"
if segment == "Segmentation":
task_="1"
payload =json.dumps({
"base64str": base64str,
"classes": prompt,
"segment": task_ })
# Prepare the payload (Adjust this part according to the API requirements)
# Send the request to the API
response = requests.put(api_key, data=payload)
# Parse the JSON response
data = response.json()
print(response.status_code)
print(data)
# Access the values (Adjust this part according to the API response format)
output_image_base64 = data['firstName'] # Assuming the API returns the output image as base64
# Convert the output image from base64 to PIL and then to NumPy array
output_image = base64str_to_PILImage(output_image_base64)
output_image = np.array(output_image)
return output_image
# Define the input components for Gradio (adding a new input for the prompt)
# image_input = gr.inputs.Image()
# text_input = gr.inputs.Textbox(label="Prompt") # New input for the text prompt
# # Define the output components for Gradio (including both image and text)
# outputs = gr.Image(type="numpy", label="Output Image")
# Define the text description within an HTML <div> element
description_html = """
<!DOCTYPE html>
<html>
<head>
<title>Tuba AI Auto-Annotation </title>
</head>
<body>
<h1>Tuba AI Auto-Annotation 🚀</h1>
<h2>Saving Time, Bounding Boxes & Polygons at a Time </h2>
<h2>Introduction</h2>
<p>Welcome to the world of DevisionX, where AI meets vision to revolutionize annotation. Our mission is to make computer vision accessible to all, and this README is your gateway to understanding how our auto-annotation model can change the way you work.</p>
<h2>Meet Tuba.AI - Your Partner in Vision</h2>
<h3>What is Tuba?</h3>
<p>Tuba is the secret sauce behind DevisionX, your no-code/low-code companion for all things computer vision. It's your toolkit for labeling, training data, and deploying AI-vision applications faster and easier than ever before.</p>
<ul>
<li>No-Code/Low-Code: Say goodbye to complex coding. Tuba's user-friendly interface makes it accessible to everyone.</li>
<li>Labeling Made Easy: Annotate your data effortlessly with Tuba's intuitive tools.</li>
<li>Faster Deployment: Deploy your AI models with ease, whether you're building a standalone app or integrating within an existing one.</li>
<li>State-of-the-Art Technology: Tuba is powered by the latest AI tech and follows production-ready standards.</li>
</ul>
<h2>The DevisionX Auto-Annotation</h2>
<p>Our auto-annotation model is a game-changer. It takes input text and images, weaving them together to generate precise bounding boxes. This AI marvel comes with a plethora of benefits:</p>
<ul>
<li>Time Saver: Say goodbye to hours of manual annotation. Let our model do the heavy lifting.</li>
<li>Annotation Formats: It speaks the language of YOLO and COCO, making it versatile for various projects.</li>
<li>Human Assistance: While it's incredibly efficient, it also respects human creativity and can be your reliable assistant.</li>
</ul>
<h2>Let's Build Together</h2>
<p>We are here to redefine the way you approach computer vision. Join us in this exciting journey, where AI meets creativity, and innovation knows no bounds.</p>
<p>Get started today and be a part of the future of vision.</p>
</body>
</html>
"""
title = "autoannotation"
description = "This is a project description. It demonstrates how to use Gradio with an image and text input to interact with an API."
import os
examples = [
["traffic.jpg", 'person,car,traffic sign,traffic light', "Segmentation"], # Example with "Segmentation" selected
["3000.jpeg", 'person,car,traffic sign,traffic light', "Detection"], # Example with "Detection" selected
]
# Create a Blocks object and use it as a context manager
with gr.Blocks() as demo:
gr.Markdown(
"""
<div style="text-align: center;">
<h1>Tuba Autoannotation Demo</h1>
<h3>A prompt based controllable model for auto annotation (Detection and Segmentation) </h3>
<h3>Saving Time, Bounding Boxes & Polygons at a Time </h3>
Powered by <a href="https://Tuba.ai">Tuba</a>
</div>
"""
)
# Define the input components and add them to the layout
with gr.Row():
image_input = gr.Image()
output = gr.Image(type="numpy", label="Output Image")
# Define the output component and add it to the layout
with gr.Row():
text_input = gr.Textbox(label="Prompt")
# text_input = gr.inputs.Textbox(label="Prompt")
with gr.Row():
segment_checkbox = gr.Radio(["Segmentation", "Detection"], value="file",label="Select Detection or Segmentation",info="Select Segmentation to extract Polygons or Detection to extract only the bounding boxes of of the desired objects automatically")
#segment_checkbox = gr.inputs.Checkbox(label="Segment", default=False)
with gr.Row():
button = gr.Button("Run")
# Define the event listener that connects the input and output components and triggers the function
button.click(fn=get_results, inputs=[image_input, text_input, segment_checkbox], outputs=output, api_name="get_results")
# Add the description below the layout
gr.Examples(
fn=get_results,
examples=examples,
inputs=[image_input, text_input,segment_checkbox],
outputs=[output]
)
gr.Markdown(description_html)
# Launch the app
demo.launch(share=False) |