autoannotation / app.py
sayedM's picture
Update app.py
a9540ef
raw
history blame
5.34 kB
import base64
import io
import cv2
import requests
import json
import gradio as gr
import os
from PIL import Image
import numpy as np
from PIL import ImageOps
# Accessing a specific environment variable
api_key = os.environ.get('devisionx')
# Checking if the environment variable exists
if not api_key:
print("devisionx environment variable is not set.")
exit()
# Define a function to call the API and get the results
def base64str_to_PILImage(base64str):
base64_img_bytes = base64str.encode('utf-8')
base64bytes = base64.b64decode(base64_img_bytes)
bytesObj = io.BytesIO(base64bytes)
return ImageOps.exif_transpose(Image.open(bytesObj))
def get_results(image, prompt):
threshold = 0.5
# Convert the NumPy array to PIL image
image = Image.fromarray(image)
# Convert the image to base64 string
with io.BytesIO() as output:
image.save(output, format="JPEG")
base64str = base64.b64encode(output.getvalue()).decode("utf-8")
# Prepare the payload (Adjust this part according to the API requirements)
payload = json.dumps({"base64str": base64str, "classes": prompt})
# Send the request to the API
response = requests.put(api_key, data=payload)
# Parse the JSON response
data = response.json()
print(response.status_code)
print(data)
# Access the values (Adjust this part according to the API response format)
output_image_base64 = data['firstName'] # Assuming the API returns the output image as base64
# Convert the output image from base64 to PIL and then to NumPy array
output_image = base64str_to_PILImage(output_image_base64)
output_image = np.array(output_image)
return output_image
# Define the input components for Gradio (adding a new input for the prompt)
image_input = gr.inputs.Image()
text_input = gr.inputs.Textbox(label="Prompt") # New input for the text prompt
# Define the output components for Gradio (including both image and text)
outputs = gr.Image(type="numpy", label="Output Image")
# Define the text description within an HTML <div> element
description_html = """
<html>
<head>
<style>
.description {
margin: 20px;
padding: 10px;
border: 1px solid #ccc;
}
</style>
</head>
<body>
<div class="description">
<p><strong>Description:</strong></p>
<p>We present a demo for performing object segmentation with training a Yolov8-seg on wheel Image dataset. The model was trained on 696 training images and validated on 199 images.</p>
<p><strong>Usage:</strong></p>
<p>You can upload wheel Image images, and the demo will provide you with your segmented image.</p>
<p><strong>Dataset:</strong></p>
<p>This dataset comprises a total of 994 images, which are divided into three distinct sets for various purposes:</p>
<ul>
<li><strong>Training Set:</strong> It includes 696 images and is intended for training the model.</li>
<li><strong>Validation Set:</strong> There are 199 images in the validation set, which is used for optimizing model parameters during development.</li>
<li><strong>Test Set:</strong> This set consists of 99 images and serves as a separate evaluation dataset to assess the performance of trained models.</li>
</ul>
<p><strong>License:</strong> This dataset is made available under the Creative Commons Attribution 4.0 International License (CC BY 4.0).</p>
<p>To access and download this dataset, please follow this link: <a href="https://universe.roboflow.com/project-wce7s/1000_seg_wheel" target="_blank">Dataset Download</a></p>
<p><strong>Download Dataset:</strong></p>
<p>To download the dataset we used, you can use the following command in colab:</p>
<pre>!wget https://universe.roboflow.com/ds/OPPOJjnJPs?key=5yzDMD610e</pre>
<p>Feel free to explore and use this repository for your object segmentation needs. If you have any questions or need assistance, please don't hesitate to reach out.</p>
</div>
</body>
</html>
"""
title = "autoannotation"
description = "This is a project description. It demonstrates how to use Gradio with an image and text input to interact with an API."
# Create a Blocks object and use it as a context manager
with gr.Blocks() as demo:
gr.Markdown(
"""
# Tuba Autoannotation Demo
This is your private demo for [Tuba Autoannotation](https://Tuba.ai),
a simple and controllable model for music generation
"""
)
# Define the input components and add them to the layout
with gr.Row():
image_input = gr.inputs.Image()
output = gr.Image(type="numpy", label="Output Image")
# Define the output component and add it to the layout
with gr.Row():
text_input = gr.inputs.Textbox(label="Prompt")
with gr.Row():
button = gr.Button("Run")
# Define the event listener that connects the input and output components and triggers the function
button.click(fn=get_results, inputs=[image_input, text_input], outputs=output, api_name="get_results")
# Add the description below the layout
gr.Markdown(description_html)
# Launch the app
demo.launch(share=False)