Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import base64
|
| 2 |
+
import io
|
| 3 |
+
import cv2
|
| 4 |
+
import requests
|
| 5 |
+
import json
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import os
|
| 8 |
+
from PIL import Image
|
| 9 |
+
import numpy as np
|
| 10 |
+
from PIL import ImageOps
|
| 11 |
+
|
| 12 |
+
# Accessing a specific environment variable
|
| 13 |
+
api_key = os.environ.get('devisionx')
|
| 14 |
+
|
| 15 |
+
# Checking if the environment variable exists
|
| 16 |
+
if not api_key:
|
| 17 |
+
print("devisionx environment variable is not set.")
|
| 18 |
+
exit()
|
| 19 |
+
|
| 20 |
+
# Define a function to call the API and get the results
|
| 21 |
+
|
| 22 |
+
def base64str_to_PILImage(base64str):
|
| 23 |
+
base64_img_bytes = base64str.encode('utf-8')
|
| 24 |
+
base64bytes = base64.b64decode(base64_img_bytes)
|
| 25 |
+
bytesObj = io.BytesIO(base64bytes)
|
| 26 |
+
return ImageOps.exif_transpose(Image.open(bytesObj))
|
| 27 |
+
|
| 28 |
+
def get_results(image, prompt):
|
| 29 |
+
threshold = 0.5
|
| 30 |
+
|
| 31 |
+
# Convert the NumPy array to PIL image
|
| 32 |
+
image = Image.fromarray(image)
|
| 33 |
+
|
| 34 |
+
# Convert the image to base64 string
|
| 35 |
+
with io.BytesIO() as output:
|
| 36 |
+
image.save(output, format="JPEG")
|
| 37 |
+
base64str = base64.b64encode(output.getvalue()).decode("utf-8")
|
| 38 |
+
|
| 39 |
+
# Prepare the payload (Adjust this part according to the API requirements)
|
| 40 |
+
payload = json.dumps({"base64str": base64str, "classes": prompt})
|
| 41 |
+
|
| 42 |
+
# Send the request to the API
|
| 43 |
+
response = requests.put(api_key, data=payload)
|
| 44 |
+
|
| 45 |
+
# Parse the JSON response
|
| 46 |
+
data = response.json()
|
| 47 |
+
print(response.status_code)
|
| 48 |
+
print(data)
|
| 49 |
+
|
| 50 |
+
# Access the values (Adjust this part according to the API response format)
|
| 51 |
+
output_image_base64 = data['firstName'] # Assuming the API returns the output image as base64
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
# Convert the output image from base64 to PIL and then to NumPy array
|
| 55 |
+
output_image = base64str_to_PILImage(output_image_base64)
|
| 56 |
+
output_image = np.array(output_image)
|
| 57 |
+
|
| 58 |
+
return output_image
|
| 59 |
+
|
| 60 |
+
# Define the input components for Gradio (adding a new input for the prompt)
|
| 61 |
+
image_input = gr.inputs.Image()
|
| 62 |
+
text_input = gr.inputs.Textbox(label="Prompt") # New input for the text prompt
|
| 63 |
+
|
| 64 |
+
# Define the output components for Gradio (including both image and text)
|
| 65 |
+
outputs = gr.Image(type="numpy", label="Output Image")
|
| 66 |
+
|
| 67 |
+
# Launch the Gradio interface
|
| 68 |
+
gr.Interface(fn=get_results, inputs=[image_input, text_input], outputs=outputs).launch(share=False)
|