Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
import io
|
3 |
+
import cv2
|
4 |
+
import requests
|
5 |
+
import json
|
6 |
+
import gradio as gr
|
7 |
+
import os
|
8 |
+
from PIL import Image
|
9 |
+
import numpy as np
|
10 |
+
from PIL import ImageOps
|
11 |
+
|
12 |
+
# Accessing a specific environment variable
|
13 |
+
api_key = os.environ.get('devisionx')
|
14 |
+
|
15 |
+
# Checking if the environment variable exists
|
16 |
+
if not api_key:
|
17 |
+
print("devisionx environment variable is not set.")
|
18 |
+
exit()
|
19 |
+
|
20 |
+
# Define a function to call the API and get the results
|
21 |
+
|
22 |
+
def base64str_to_PILImage(base64str):
|
23 |
+
base64_img_bytes = base64str.encode('utf-8')
|
24 |
+
base64bytes = base64.b64decode(base64_img_bytes)
|
25 |
+
bytesObj = io.BytesIO(base64bytes)
|
26 |
+
return ImageOps.exif_transpose(Image.open(bytesObj))
|
27 |
+
|
28 |
+
def get_results(image, prompt):
|
29 |
+
threshold = 0.5
|
30 |
+
|
31 |
+
# Convert the NumPy array to PIL image
|
32 |
+
image = Image.fromarray(image)
|
33 |
+
|
34 |
+
# Convert the image to base64 string
|
35 |
+
with io.BytesIO() as output:
|
36 |
+
image.save(output, format="JPEG")
|
37 |
+
base64str = base64.b64encode(output.getvalue()).decode("utf-8")
|
38 |
+
|
39 |
+
# Prepare the payload (Adjust this part according to the API requirements)
|
40 |
+
payload = json.dumps({"base64str": base64str, "classes": prompt})
|
41 |
+
|
42 |
+
# Send the request to the API
|
43 |
+
response = requests.put(api_key, data=payload)
|
44 |
+
|
45 |
+
# Parse the JSON response
|
46 |
+
data = response.json()
|
47 |
+
print(response.status_code)
|
48 |
+
print(data)
|
49 |
+
|
50 |
+
# Access the values (Adjust this part according to the API response format)
|
51 |
+
output_image_base64 = data['firstName'] # Assuming the API returns the output image as base64
|
52 |
+
|
53 |
+
|
54 |
+
# Convert the output image from base64 to PIL and then to NumPy array
|
55 |
+
output_image = base64str_to_PILImage(output_image_base64)
|
56 |
+
output_image = np.array(output_image)
|
57 |
+
|
58 |
+
return output_image
|
59 |
+
|
60 |
+
# Define the input components for Gradio (adding a new input for the prompt)
|
61 |
+
image_input = gr.inputs.Image()
|
62 |
+
text_input = gr.inputs.Textbox(label="Prompt") # New input for the text prompt
|
63 |
+
|
64 |
+
# Define the output components for Gradio (including both image and text)
|
65 |
+
outputs = gr.Image(type="numpy", label="Output Image")
|
66 |
+
|
67 |
+
# Launch the Gradio interface
|
68 |
+
gr.Interface(fn=get_results, inputs=[image_input, text_input], outputs=outputs).launch(share=False)
|