Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,31 +6,35 @@ import tempfile
|
|
6 |
import os
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
|
|
|
9 |
# ----- Initialization -----
|
10 |
model_name_or_path = "TheBloke/Llama-2-13B-chat-GGUF"
|
11 |
-
model_basename = "llama-2-13b-chat.Q5_K_M.gguf"
|
12 |
|
13 |
model_path = hf_hub_download(
|
14 |
repo_id=model_name_or_path,
|
15 |
filename=model_basename
|
16 |
)
|
17 |
|
18 |
-
# Initialize the LLAMA model.
|
19 |
llm = Llama(
|
20 |
model_path=model_path,
|
21 |
-
n_threads=2,
|
22 |
-
n_batch=512,
|
23 |
-
n_gpu_layers=43,
|
24 |
-
n_ctx=4096,
|
25 |
)
|
26 |
|
|
|
27 |
# Load the Whisper model for speech-to-text transcription.
|
28 |
whisper_model = whisper.load_model("base")
|
29 |
|
30 |
# ----- Helper Functions -----
|
31 |
|
32 |
def transcribe_audio(audio_file):
|
33 |
-
"""
|
|
|
|
|
34 |
if audio_file is None:
|
35 |
return ""
|
36 |
result = whisper_model.transcribe(audio_file)
|
@@ -39,14 +43,16 @@ def transcribe_audio(audio_file):
|
|
39 |
def generate_response(prompt, max_tokens=150, temperature=0.7):
|
40 |
"""
|
41 |
Uses LLAMA-CPP to generate a response for the given prompt.
|
42 |
-
Note: Removed echo=True to prevent repeating the prompt.
|
43 |
"""
|
44 |
-
output
|
|
|
45 |
response = output["choices"][0]["text"]
|
46 |
return response.strip()
|
47 |
|
48 |
def text_to_speech(text):
|
49 |
-
"""
|
|
|
|
|
50 |
tts = gTTS(text=text, lang="en")
|
51 |
tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
|
52 |
tts.save(tmp_file.name)
|
@@ -56,14 +62,10 @@ def voice_chat(audio, text, history, max_tokens, temperature):
|
|
56 |
"""
|
57 |
Handles a single turn of the conversation:
|
58 |
- If an audio file is provided and no text message, transcribe it.
|
59 |
-
- Builds a prompt
|
60 |
- Generates a response from LLAMA.
|
61 |
-
- Converts the
|
62 |
-
Returns
|
63 |
-
- A new history containing only the current turn.
|
64 |
-
- The assistant's response text.
|
65 |
-
- The assistant's response audio filepath.
|
66 |
-
- The updated state (new history).
|
67 |
"""
|
68 |
# Use the transcribed audio if text is empty.
|
69 |
if audio is not None and (text is None or text.strip() == ""):
|
@@ -71,18 +73,23 @@ def voice_chat(audio, text, history, max_tokens, temperature):
|
|
71 |
else:
|
72 |
user_input = text if text else ""
|
73 |
|
74 |
-
# Build prompt
|
75 |
-
prompt =
|
|
|
|
|
|
|
|
|
76 |
|
77 |
# Generate response using LLAMA-CPP.
|
78 |
response_text = generate_response(prompt, max_tokens=max_tokens, temperature=temperature)
|
79 |
-
# Convert
|
80 |
audio_response = text_to_speech(response_text)
|
81 |
|
82 |
-
#
|
83 |
-
new_history =
|
|
|
84 |
|
85 |
-
# Return the
|
86 |
return new_history, response_text, audio_response, new_history
|
87 |
|
88 |
# ----- Gradio Interface -----
|
@@ -118,4 +125,4 @@ with gr.Blocks() as demo:
|
|
118 |
)
|
119 |
|
120 |
# Launch the app.
|
121 |
-
demo.launch()
|
|
|
6 |
import os
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
|
9 |
+
|
10 |
# ----- Initialization -----
|
11 |
model_name_or_path = "TheBloke/Llama-2-13B-chat-GGUF"
|
12 |
+
model_basename = "llama-2-13b-chat.Q5_K_M.gguf" # the model is in gguf format
|
13 |
|
14 |
model_path = hf_hub_download(
|
15 |
repo_id=model_name_or_path,
|
16 |
filename=model_basename
|
17 |
)
|
18 |
|
19 |
+
# Initialize the LLAMA model. Update the model_path to point to your model file.
|
20 |
llm = Llama(
|
21 |
model_path=model_path,
|
22 |
+
n_threads=2, # CPU cores
|
23 |
+
n_batch=512, # Should be between 1 and n_ctx, consider the amount of VRAM in your GPU.
|
24 |
+
n_gpu_layers=43, # Change this value based on your model and your GPU VRAM pool.
|
25 |
+
n_ctx=4096, # Context window
|
26 |
)
|
27 |
|
28 |
+
|
29 |
# Load the Whisper model for speech-to-text transcription.
|
30 |
whisper_model = whisper.load_model("base")
|
31 |
|
32 |
# ----- Helper Functions -----
|
33 |
|
34 |
def transcribe_audio(audio_file):
|
35 |
+
"""
|
36 |
+
Transcribes the provided audio file using Whisper.
|
37 |
+
"""
|
38 |
if audio_file is None:
|
39 |
return ""
|
40 |
result = whisper_model.transcribe(audio_file)
|
|
|
43 |
def generate_response(prompt, max_tokens=150, temperature=0.7):
|
44 |
"""
|
45 |
Uses LLAMA-CPP to generate a response for the given prompt.
|
|
|
46 |
"""
|
47 |
+
# Call the LLAMA model. The output is a dict with a "choices" list.
|
48 |
+
output = llm(prompt, max_tokens=max_tokens, temperature=temperature, echo=True)
|
49 |
response = output["choices"][0]["text"]
|
50 |
return response.strip()
|
51 |
|
52 |
def text_to_speech(text):
|
53 |
+
"""
|
54 |
+
Converts text to speech using gTTS and returns the filepath to the saved audio.
|
55 |
+
"""
|
56 |
tts = gTTS(text=text, lang="en")
|
57 |
tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
|
58 |
tts.save(tmp_file.name)
|
|
|
62 |
"""
|
63 |
Handles a single turn of the conversation:
|
64 |
- If an audio file is provided and no text message, transcribe it.
|
65 |
+
- Builds a conversation prompt from the chat history.
|
66 |
- Generates a response from LLAMA.
|
67 |
+
- Converts the response to speech.
|
68 |
+
Returns updated chat history, the response text, the response audio filepath, and updated state.
|
|
|
|
|
|
|
|
|
69 |
"""
|
70 |
# Use the transcribed audio if text is empty.
|
71 |
if audio is not None and (text is None or text.strip() == ""):
|
|
|
73 |
else:
|
74 |
user_input = text if text else ""
|
75 |
|
76 |
+
# Build the conversation prompt (history is a list of tuples: (user, assistant))
|
77 |
+
prompt = ""
|
78 |
+
if history:
|
79 |
+
for (user_turn, bot_turn) in history:
|
80 |
+
prompt += f"User: {user_turn}\nAssistant: {bot_turn}\n"
|
81 |
+
prompt += f"User: {user_input}\nAssistant: "
|
82 |
|
83 |
# Generate response using LLAMA-CPP.
|
84 |
response_text = generate_response(prompt, max_tokens=max_tokens, temperature=temperature)
|
85 |
+
# Convert the response to speech audio.
|
86 |
audio_response = text_to_speech(response_text)
|
87 |
|
88 |
+
# Append this turn to the conversation history.
|
89 |
+
new_history = history.copy() if history else []
|
90 |
+
new_history.append((user_input, response_text))
|
91 |
|
92 |
+
# Return four outputs: update the Chatbot display, show the assistant text, play audio, and update state.
|
93 |
return new_history, response_text, audio_response, new_history
|
94 |
|
95 |
# ----- Gradio Interface -----
|
|
|
125 |
)
|
126 |
|
127 |
# Launch the app.
|
128 |
+
demo.launch()
|