Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -18,4 +18,138 @@ from langchain.schema.output_parser import StrOutputParser
|
|
18 |
from langchain_core.messages import HumanMessage, SystemMessage
|
19 |
|
20 |
df = pd.read_csv('./RAW_recipes.csv')
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
from langchain_core.messages import HumanMessage, SystemMessage
|
19 |
|
20 |
df = pd.read_csv('./RAW_recipes.csv')
|
21 |
+
|
22 |
+
# Variables
|
23 |
+
max_length = 231637 #total number of recipes aka rows
|
24 |
+
curr_len = 10000 # how much we want to process and embed
|
25 |
+
|
26 |
+
#Concatenate all rows into one string
|
27 |
+
curr_i = 0
|
28 |
+
recipe_info = []
|
29 |
+
for index, row in df.iterrows():
|
30 |
+
if curr_i >= curr_len:
|
31 |
+
break
|
32 |
+
curr_i+=1
|
33 |
+
name, id, minutes, contributor_id, submitted, tags, nutrition, n_steps, steps, description, ingredients, n_ingredients = row
|
34 |
+
|
35 |
+
#convert to list
|
36 |
+
nutrition = ast.literal_eval(nutrition)
|
37 |
+
steps = ast.literal_eval(steps)
|
38 |
+
|
39 |
+
#format nutrition
|
40 |
+
nutrition_map = ["Calorie"," Total Fat", 'Sugar', 'Sodium', 'Protein', 'Saturated Fat', 'Total Carbohydrate']
|
41 |
+
nutrition_labeled = []
|
42 |
+
for label, num in zip(nutrition_map, nutrition):
|
43 |
+
nutrition_labeled.append(f"{label} : {num} % daily value")
|
44 |
+
|
45 |
+
#format steps
|
46 |
+
for i in range(len(steps)):
|
47 |
+
steps[i] = f"{i+1}. " + steps[i]
|
48 |
+
recipe_info.append(f'''
|
49 |
+
{name} : {minutes} minutes, submitted on {submitted}
|
50 |
+
description: {description},
|
51 |
+
ingredients: {ingredients}
|
52 |
+
number of ingredients: {n_ingredients}
|
53 |
+
tags: {tags}, nutrition: {nutrition_labeled}, total steps: {n_steps}
|
54 |
+
steps: {steps}
|
55 |
+
'''.replace("\r", "").replace("\n", ""))
|
56 |
+
|
57 |
+
|
58 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=150)
|
59 |
+
|
60 |
+
#split into recipe_info into chunks
|
61 |
+
docs = []
|
62 |
+
for doc in recipe_info:
|
63 |
+
# Wrap each string in a Document object
|
64 |
+
document = Document(page_content=doc) # create a Document object with the content
|
65 |
+
chunk = text_splitter.split_documents([document]) # Pass a list of Document objects
|
66 |
+
docs.append(chunk)
|
67 |
+
|
68 |
+
# merge all chunks into one
|
69 |
+
merged_documents = []
|
70 |
+
for doc in docs:
|
71 |
+
merged_documents.extend(doc)
|
72 |
+
|
73 |
+
# Hugging Face model for embeddings.
|
74 |
+
model_name = "sentence-transformers/all-MiniLM-L6-v2"
|
75 |
+
model_kwargs = {'device': 'cpu'}
|
76 |
+
embeddings = HuggingFaceEmbeddings(
|
77 |
+
model_name=model_name,
|
78 |
+
model_kwargs=model_kwargs,
|
79 |
+
)
|
80 |
+
|
81 |
+
#initialize weaviate client
|
82 |
+
client = weaviate.Client(
|
83 |
+
embedded_options = EmbeddedOptions()
|
84 |
+
)
|
85 |
+
|
86 |
+
|
87 |
+
vector_search = Weaviate.from_documents(
|
88 |
+
client = client,
|
89 |
+
documents = merged_documents,
|
90 |
+
embedding = embeddings,
|
91 |
+
by_text = False
|
92 |
+
)
|
93 |
+
|
94 |
+
|
95 |
+
# Instantiate Weaviate Vector Search as a retriever
|
96 |
+
|
97 |
+
# Basic RAG.
|
98 |
+
# k to search for only the 25 most relevant documents.
|
99 |
+
# score_threshold to use only documents with a relevance score above 0.77.
|
100 |
+
k = 10
|
101 |
+
score_threshold = 0.77
|
102 |
+
|
103 |
+
retriever = vector_search.as_retriever(
|
104 |
+
search_type = "mmr",
|
105 |
+
search_kwargs = {
|
106 |
+
"k": k,
|
107 |
+
"score_threshold": score_threshold
|
108 |
+
}
|
109 |
+
)
|
110 |
+
|
111 |
+
template = """
|
112 |
+
You are an assistant for question-answering tasks.
|
113 |
+
Use the following pieces of retrieved context to answer the question at the end.
|
114 |
+
The following pieces of retrieved context are recipes.
|
115 |
+
If you don't know the answer, just say that you don't know. Don't try to make up an answer.
|
116 |
+
Dont say anthing mean or offensive.
|
117 |
+
|
118 |
+
Context: {context}
|
119 |
+
|
120 |
+
Question: {question}
|
121 |
+
"""
|
122 |
+
|
123 |
+
custom_rag_prompt = ChatPromptTemplate.from_template(template)
|
124 |
+
|
125 |
+
llm = ChatOpenAI(
|
126 |
+
model_name="gpt-3.5-turbo",
|
127 |
+
temperature=0.2)
|
128 |
+
|
129 |
+
# Regular chain format: chain = prompt | model | output_parser
|
130 |
+
rag_chain = (
|
131 |
+
{"context": retriever, "question": RunnablePassthrough()}
|
132 |
+
| custom_rag_prompt
|
133 |
+
| llm
|
134 |
+
| StrOutputParser()
|
135 |
+
)
|
136 |
+
|
137 |
+
|
138 |
+
def get_response(query):
|
139 |
+
return rag_chain.invoke(query)
|
140 |
+
|
141 |
+
|
142 |
+
with gr.Blocks(theme=Base(), title="RAG Recipe AI") as demo:
|
143 |
+
gr.Markdown("RAG Recipe AI")
|
144 |
+
textbox = gr.Textbox(label="Question:")
|
145 |
+
with gr.Row():
|
146 |
+
button = gr.Button("Submit", variant="primary")
|
147 |
+
with gr.Column():
|
148 |
+
output1 = gr.Textbox(lines=1, max_lines=10, label="Answer:")
|
149 |
+
# Call get_response function upon clicking the Submit button.
|
150 |
+
button.click(get_response, textbox, outputs=[output1])
|
151 |
+
|
152 |
+
demo.launch()
|
153 |
+
|
154 |
+
|
155 |
+
|