dgjx's picture
Update app.py
dd3a93a verified
raw
history blame
1.62 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# 加载模型和分词器
model_name = "defog/sqlcoder-7b-2" # 使用更新的模型以提高性能
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto") # 降低内存占用
def generate_sql(user_question, create_table_statements, instructions=""):
prompt = f"""<|begin_of_text|><|start_header_id|>user<|end_header_id|>
Generate a SQL query to answer this question: `{user_question}`
{instructions}
DDL statements:
{create_table_statements}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
The following SQL query best answers the question `{user_question}`:
```sql
"""
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_length=150)
sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True)
return sql_query
demo = gr.Interface(
fn=generate_sql,
inputs=[
gr.Markdown("## SQL Query Generator"),
gr.Textbox(label="User Question", placeholder="请输入您的问题...", value="从纽约的客户那里获得的总收入是多少?"),
gr.Textbox(label="Create Table Statements", placeholder="请输入DDL语句...", value="CREATE TABLE customers (id INT, city VARCHAR(50), revenue DECIMAL);"),
gr.Textbox(label="Instructions (可选)", placeholder="请输入额外说明...", value="")
],
outputs="text",
)
if __name__ == "__main__":
demo.launch(share=True)