dgjx commited on
Commit
2725c13
·
verified ·
1 Parent(s): c802c0e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -17
app.py CHANGED
@@ -5,32 +5,29 @@ import torch
5
  # 加载模型和分词器
6
  model_name = "defog/sqlcoder-7b-2" # 使用更新的模型以提高性能
7
  tokenizer = AutoTokenizer.from_pretrained(model_name)
8
- model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto") # 使用半精度以降低内存占用
9
 
10
- def generate_sql(user_question, create_table_statements):
11
- # 准备输入
12
- prompt = f"Generate a SQL query to answer this question: `{user_question}`\nDDL statements:\n{create_table_statements}\nThe following SQL query best answers the question `{user_question}`:"
13
 
14
- # 编码输入
15
  inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
16
-
17
- # 生成输出
18
- with torch.no_grad():
19
- outputs = model.generate(**inputs, max_length=150)
20
-
21
- # 解码输出
22
  sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True)
 
23
  return sql_query
24
 
25
- # 创建 Gradio 接口
26
  with gr.Blocks() as demo:
27
  gr.Markdown("## SQL Query Generator")
28
- user_question = gr.Textbox(label="User Question", placeholder="请输入您的问题...")
29
- create_table_statements = gr.Textbox(label="DDL Statements", placeholder="请输入表的DDL语句...")
30
- sql_output = gr.Textbox(label="Generated SQL Query", interactive=False)
31
 
32
- submit_btn = gr.Button("Generate SQL")
33
- submit_btn.click(generate_sql, inputs=[user_question, create_table_statements], outputs=sql_output)
 
 
 
 
 
 
34
 
35
 
36
  if __name__ == "__main__":
 
5
  # 加载模型和分词器
6
  model_name = "defog/sqlcoder-7b-2" # 使用更新的模型以提高性能
7
  tokenizer = AutoTokenizer.from_pretrained(model_name)
8
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto") # 降低内存占用
9
 
10
+ def generate_sql(user_question, create_table_statements, instructions=""):
11
+ prompt = f"Generate a SQL query to answer this question: `{user_question}`\n{instructions}\n\nDDL statements:\n{create_table_statements}\n<|eot_id|>"
 
12
 
 
13
  inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
14
+ outputs = model.generate(**inputs, max_length=150)
 
 
 
 
 
15
  sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True)
16
+
17
  return sql_query
18
 
19
+ # Gradio 接口
20
  with gr.Blocks() as demo:
21
  gr.Markdown("## SQL Query Generator")
 
 
 
22
 
23
+ user_question = gr.Textbox(label="User Question", placeholder="请输入您的问题...", value="从纽约的客户那里获得的总收入是多少?")
24
+ create_table_statements = gr.Textbox(label="Create Table Statements", placeholder="请输入DDL语句...", value="CREATE TABLE customers (id INT, city VARCHAR(50), revenue DECIMAL);")
25
+ instructions = gr.Textbox(label="Instructions (可选)", placeholder="请输入额外说明...", value="")
26
+
27
+ submit_btn = gr.Button("生成 SQL 查询")
28
+ output = gr.Textbox(label="生成的 SQL 查询")
29
+
30
+ submit_btn.click(generate_sql, inputs=[user_question, create_table_statements, instructions], outputs=output)
31
 
32
 
33
  if __name__ == "__main__":