dgjx commited on
Commit
df8873e
·
verified ·
1 Parent(s): 687f4c4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -11
app.py CHANGED
@@ -1,24 +1,39 @@
1
  import gradio as gr
 
2
  import torch
3
- from transformers import pipeline
4
 
5
- # 加载 SQLCoder 模型
6
- sqlcoder = pipeline("text2text-generation", model="defog/sqlcoder-7b")
 
 
7
 
8
  def generate_sql(user_question, create_table_statements):
9
- prompt = f"Generate a SQL query to answer this question: \"{user_question}\"\nDDL statements:\n{create_table_statements}\n"
10
- result = sqlcoder(prompt)
11
- return result[0]['generated_text']
 
 
 
 
 
 
 
 
 
 
12
 
13
- # 创建 Gradio 界面
14
  with gr.Blocks() as demo:
15
  gr.Markdown("## SQL Query Generator")
16
  user_question = gr.Textbox(label="User Question", placeholder="请输入您的问题...")
17
- create_table_statements = gr.Textbox(label="DDL Statements", placeholder="请输入表的 DDL 语句...")
18
- output_sql = gr.Textbox(label="Generated SQL Query", interactive=False)
19
-
20
  submit_btn = gr.Button("Generate SQL")
21
- submit_btn.click(generate_sql, inputs=[user_question, create_table_statements], outputs=output_sql)
 
 
 
22
 
23
 
24
  if __name__ == "__main__":
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
  import torch
 
4
 
5
+ # 加载模型和分词器
6
+ model_name = "defog/sqlcoder-7b-2" # 使用更新的模型以提高性能
7
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
8
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto") # 使用半精度以降低内存占用
9
 
10
  def generate_sql(user_question, create_table_statements):
11
+ # 准备输入
12
+ prompt = f"Generate a SQL query to answer this question: `{user_question}`\nDDL statements:\n{create_table_statements}\nThe following SQL query best answers the question `{user_question}`:"
13
+
14
+ # 编码输入
15
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
16
+
17
+ # 生成输出
18
+ with torch.no_grad():
19
+ outputs = model.generate(**inputs, max_length=150)
20
+
21
+ # 解码输出
22
+ sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True)
23
+ return sql_query
24
 
25
+ # 创建 Gradio 接口
26
  with gr.Blocks() as demo:
27
  gr.Markdown("## SQL Query Generator")
28
  user_question = gr.Textbox(label="User Question", placeholder="请输入您的问题...")
29
+ create_table_statements = gr.Textbox(label="DDL Statements", placeholder="请输入表的DDL语句...")
30
+ sql_output = gr.Textbox(label="Generated SQL Query", interactive=False)
31
+
32
  submit_btn = gr.Button("Generate SQL")
33
+ submit_btn.click(generate_sql, inputs=[user_question, create_table_statements], outputs=sql_output)
34
+
35
+ # 启动 Gradio 应用
36
+ demo.launch()
37
 
38
 
39
  if __name__ == "__main__":