import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import torch # 加载模型和分词器 model_name = "defog/sqlcoder-7b-2" # 使用更新的模型以提高性能 tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto") # 降低内存占用 def generate_sql(user_question, create_table_statements, instructions=""): prompt = f"Generate a SQL query to answer this question: `{user_question}`\n{instructions}\n\nDDL statements:\n{create_table_statements}\n<|eot_id|>" inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_length=150) sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True) return sql_query # Gradio 接口 with gr.Blocks() as demo: gr.Markdown("## SQL Query Generator") user_question = gr.Textbox(label="User Question", placeholder="请输入您的问题...", value="从纽约的客户那里获得的总收入是多少?") create_table_statements = gr.Textbox(label="Create Table Statements", placeholder="请输入DDL语句...", value="CREATE TABLE customers (id INT, city VARCHAR(50), revenue DECIMAL);") instructions = gr.Textbox(label="Instructions (可选)", placeholder="请输入额外说明...", value="") submit_btn = gr.Button("生成 SQL 查询") output = gr.Textbox(label="生成的 SQL 查询") submit_btn.click(generate_sql, inputs=[user_question, create_table_statements, instructions], outputs=output) if __name__ == "__main__": demo.launch(share=True)