import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import torch # 加载模型和分词器 model_name = "defog/sqlcoder-7b-2" # 使用更新的模型以提高性能 tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto") # 使用半精度以降低内存占用 def generate_sql(user_question, create_table_statements): # 准备输入 prompt = f"Generate a SQL query to answer this question: `{user_question}`\nDDL statements:\n{create_table_statements}\nThe following SQL query best answers the question `{user_question}`:" # 编码输入 inputs = tokenizer(prompt, return_tensors="pt").to(model.device) # 生成输出 with torch.no_grad(): outputs = model.generate(**inputs, max_length=150) # 解码输出 sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True) return sql_query # 创建 Gradio 接口 with gr.Blocks() as demo: gr.Markdown("## SQL Query Generator") user_question = gr.Textbox(label="User Question", placeholder="请输入您的问题...") create_table_statements = gr.Textbox(label="DDL Statements", placeholder="请输入表的DDL语句...") sql_output = gr.Textbox(label="Generated SQL Query", interactive=False) submit_btn = gr.Button("Generate SQL") submit_btn.click(generate_sql, inputs=[user_question, create_table_statements], outputs=sql_output) # 启动 Gradio 应用 demo.launch() if __name__ == "__main__": demo.launch()