import os from typing import List from chainlit.types import AskFileResponse from aimakerspace.text_utils import CharacterTextSplitter, TextFileLoader from aimakerspace.openai_utils.prompts import ( UserRolePrompt, SystemRolePrompt, AssistantRolePrompt, ) from aimakerspace.openai_utils.embedding import EmbeddingModel from aimakerspace.vectordatabase import VectorDatabase from aimakerspace.openai_utils.chatmodel import ChatOpenAI import chainlit as cl import fitz # PyMuPDF for PDF reading from qdrant_client import QdrantClient from qdrant_client.http.models import PointStruct, VectorParams, Distance system_template = """\ Use the following context to answer a user's question. If you cannot find the answer in the context, say you don't know the answer.""" system_role_prompt = SystemRolePrompt(system_template) user_prompt_template = """\ Context: {context} Question: {question} """ user_role_prompt = UserRolePrompt(user_prompt_template) class RetrievalAugmentedQAPipeline: def __init__(self, llm: ChatOpenAI(), vector_db_retriever) -> None: self.llm = llm self.vector_db_retriever = vector_db_retriever async def arun_pipeline(self, user_query: str): context_list = self.vector_db_retriever.search_by_text(user_query, k=4) context_prompt = "" for context in context_list: context_prompt += context[0] + "\n" formatted_system_prompt = system_role_prompt.create_message() formatted_user_prompt = user_role_prompt.create_message(question=user_query, context=context_prompt) async def generate_response(): async for chunk in self.llm.astream([formatted_system_prompt, formatted_user_prompt]): yield chunk return {"response": generate_response(), "context": context_list} text_splitter = CharacterTextSplitter() def process_text_file(file: AskFileResponse): import tempfile file_extension = os.path.splitext(file.name)[-1].lower() if file_extension == ".txt": with tempfile.NamedTemporaryFile(mode="w", delete=False, suffix=".txt") as temp_file: temp_file_path = temp_file.name with open(temp_file_path, "wb") as f: f.write(file.content) text_loader = TextFileLoader(temp_file_path) documents = text_loader.load_documents() elif file_extension == ".pdf": with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_file: temp_file_path = temp_file.name with open(temp_file_path, "wb") as f: f.write(file.content) documents = [] with fitz.open(temp_file_path) as doc: text = "" for page in doc: text += page.get_text("text") documents.append(text) else: raise ValueError("Unsupported file type. Please upload a .txt or .pdf file.") texts = text_splitter.split_texts(documents) return texts async def initialize_vector_db(choice, texts): if choice == "current": vector_db = VectorDatabase() vector_db = await vector_db.abuild_from_list(texts) return vector_db elif choice == "qdrant": client = QdrantClient(":memory:") # Using an in-memory Qdrant instance for demonstration client.recreate_collection( collection_name="my_collection", vectors_config=VectorParams(size=768, distance=Distance.COSINE) ) points = [PointStruct(id=i, vector=[0.0] * 768, payload={"text": text}) for i, text in enumerate(texts)] client.upsert(collection_name="my_collection", points=points) return client @cl.on_chat_start async def on_chat_start(): # Prompt the user to select the vector database user_choice = await cl.AskSelectMessage( content="Which vector database would you like to use?", options=["current", "qdrant"], ).send() files = None # Wait for the user to upload a file while files is None: files = await cl.AskFileMessage( content="Please upload a Text File or PDF to begin!", accept=["text/plain", "application/pdf"], max_size_mb=2, timeout=180, ).send() file = files[0] msg = cl.Message( content=f"Processing `{file.name}`...", disable_human_feedback=True ) await msg.send() # Load the file texts = process_text_file(file) print(f"Processing {len(texts)} text chunks") # Initialize the selected vector database vector_db = await initialize_vector_db(user_choice, texts) chat_openai = ChatOpenAI() # Create a chain retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline( vector_db_retriever=vector_db, llm=chat_openai ) # Let the user know that the system is ready msg.content = f"Processing `{file.name}` done. You can now ask questions!" await msg.update() cl.user_session.set("chain", retrieval_augmented_qa_pipeline) @cl.on_message async def main(message): chain = cl.user_session.get("chain") msg = cl.Message(content="") result = await chain.arun_pipeline(message.content) async for stream_resp in result["response"]: await msg.stream_token(stream_resp) await msg.send()