Spaces:
Sleeping
Sleeping
File size: 5,988 Bytes
fddcc1b c6185a5 141e282 c6185a5 02c225a 10269f1 329a62d c6185a5 248f463 c6185a5 fddcc1b 10269f1 841a0df c6185a5 10269f1 c6185a5 10269f1 02c225a 10269f1 c6185a5 10269f1 329a62d 10269f1 329a62d 10269f1 329a62d 10269f1 329a62d 10269f1 c6185a5 329a62d c6185a5 329a62d 10269f1 329a62d 141e282 329a62d 5f3487d 329a62d 141e282 c6185a5 329a62d c6185a5 10269f1 c6185a5 329a62d c6185a5 329a62d 2fb2795 10269f1 329a62d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import spaces
import gradio as gr
import torch
import torch.nn.functional as F
from facenet_pytorch import MTCNN, InceptionResnetV1
import os
import numpy as np
from PIL import Image as PILImage
import zipfile
import cv2
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
from pytorch_grad_cam.utils.image import show_cam_on_image
import tempfile
import matplotlib.pyplot as plt
from tqdm import tqdm
import io
with zipfile.ZipFile("examples.zip","r") as zip_ref:
zip_ref.extractall(".")
DEVICE = 'cuda:0' if torch.cuda.is_available() else 'cpu'
mtcnn = MTCNN(
select_largest=False,
post_process=False,
device=DEVICE
).to(DEVICE).eval()
model = InceptionResnetV1(
pretrained="vggface2",
classify=True,
num_classes=1,
device=DEVICE
)
checkpoint = torch.load("resnetinceptionv1_epoch_32.pth", map_location=torch.device('cpu'))
model.load_state_dict(checkpoint['model_state_dict'])
model.to(DEVICE)
model.eval()
EXAMPLES_FOLDER = 'examples'
examples_names = os.listdir(EXAMPLES_FOLDER)
examples = []
for example_name in examples_names:
example_path = os.path.join(EXAMPLES_FOLDER, example_name)
label = example_name.split('_')[0]
example = {
'path': example_path,
'label': label
}
examples.append(example)
np.random.shuffle(examples) # shuffle
@spaces.GPU
def process_frame(frame, mtcnn, model, cam, targets):
face = mtcnn(PILImage.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)))
if face is None:
return frame, None, None
face = face.unsqueeze(0)
face = F.interpolate(face, size=(256, 256), mode='bilinear', align_corners=False)
face = face.to(DEVICE)
face = face.to(torch.float32)
face = face / 255.0
face_image_to_plot = face.squeeze(0).permute(1, 2, 0).cpu().detach().numpy()
grayscale_cam = cam(input_tensor=face, targets=targets, eigen_smooth=True)
grayscale_cam = grayscale_cam[0, :]
visualization = show_cam_on_image(face_image_to_plot, grayscale_cam, use_rgb=True)
with torch.no_grad():
output = torch.sigmoid(model(face).squeeze(0))
prediction = "real" if output.item() < 0.5 else "fake"
confidence = 1 - output.item() if prediction == "real" else output.item()
return visualization, prediction, confidence
@spaces.GPU
def analyze_video(input_video: str):
"""Analyze the video for deepfake detection"""
cap = cv2.VideoCapture(input_video)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
target_layers = [model.block8.branch1[-1]]
cam = GradCAM(model=model, target_layers=target_layers)
targets = [ClassifierOutputTarget(0)]
frame_confidences = []
frame_predictions = []
for _ in tqdm(range(total_frames), desc="Analyzing video"):
ret, frame = cap.read()
if not ret:
break
_, prediction, confidence = process_frame(frame, mtcnn, model, cam, targets)
if prediction is not None and confidence is not None:
frame_confidences.append(confidence)
frame_predictions.append(1 if prediction == "fake" else 0)
cap.release()
# Calculate metrics
fake_percentage = (sum(frame_predictions) / len(frame_predictions)) * 100 if frame_predictions else 0
avg_confidence = np.mean(frame_confidences) if frame_confidences else 0
# Create graphs
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 12))
# Confidence over time
ax1.plot(frame_confidences)
ax1.set_title("Confidence Over Time")
ax1.set_xlabel("Frame")
ax1.set_ylabel("Confidence")
ax1.set_ylim(0, 1)
# Prediction distribution
ax2.hist(frame_predictions, bins=[0, 0.5, 1], rwidth=0.8)
ax2.set_title("Distribution of Predictions")
ax2.set_xlabel("Prediction (0: Real, 1: Fake)")
ax2.set_ylabel("Count")
# Save plot to bytes
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
# Create progress bar image
progress_fig, progress_ax = plt.subplots(figsize=(8, 2))
progress_ax.barh(["Fake"], [fake_percentage], color='red')
progress_ax.barh(["Fake"], [100 - fake_percentage], left=[fake_percentage], color='green')
progress_ax.set_xlim(0, 100)
progress_ax.set_title("Fake Percentage")
progress_ax.set_xlabel("Percentage")
progress_ax.text(fake_percentage, 0, f"{fake_percentage:.1f}%", va='center', ha='left')
# Save progress bar to bytes
progress_buf = io.BytesIO()
progress_fig.savefig(progress_buf, format='png')
progress_buf.seek(0)
return {
"fake_percentage": fake_percentage,
"avg_confidence": avg_confidence,
"analysis_plot": buf,
"progress_bar": progress_buf,
"total_frames": total_frames,
"processed_frames": len(frame_confidences)
}
def format_results(results):
return f"""
Analysis Results:
- Fake Percentage: {results['fake_percentage']:.2f}%
- Average Confidence: {results['avg_confidence']:.2f}
- Total Frames: {results['total_frames']}
- Processed Frames: {results['processed_frames']}
"""
def analyze_and_format(input_video):
results = analyze_video(input_video)
text_results = format_results(results)
# Convert BytesIO to PIL Images
analysis_plot = PILImage.open(results['analysis_plot'])
progress_bar = PILImage.open(results['progress_bar'])
return text_results, analysis_plot, progress_bar
interface = gr.Interface(
fn=analyze_and_format,
inputs=[
gr.Video(label="Input Video")
],
outputs=[
gr.Textbox(label="Analysis Results"),
gr.Image(label="Analysis Plots"),
gr.Image(label="Fake Percentage")
],
title="Video Deepfake Analysis",
description="Upload a video to analyze for potential deepfakes.",
examples=[]
)
if __name__ == "__main__":
interface.launch(share=True) |