Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,56 +1,134 @@
|
|
1 |
#!/usr/bin/env python
|
2 |
# -*- coding: utf-8 -*-
|
3 |
|
|
|
4 |
import tqdm
|
5 |
from PIL import Image
|
|
|
6 |
import torch
|
7 |
import fitz
|
|
|
8 |
import gradio as gr
|
9 |
import spaces
|
10 |
import os
|
11 |
from transformers import AutoModel
|
12 |
from transformers import AutoTokenizer
|
13 |
import numpy as np
|
|
|
14 |
|
15 |
-
cache_dir = '
|
16 |
os.makedirs(cache_dir, exist_ok=True)
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
device = 'cuda'
|
19 |
|
20 |
-
print("
|
21 |
-
model_path = 'RhapsodyAI/minicpm-visual-embedding-v0'
|
22 |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
23 |
model = AutoModel.from_pretrained(model_path, trust_remote_code=True)
|
24 |
model.eval()
|
25 |
model.to(device)
|
26 |
-
print("
|
27 |
|
28 |
-
print("
|
29 |
gen_model_path = 'openbmb/MiniCPM-V-2_6'
|
30 |
gen_tokenizer = AutoTokenizer.from_pretrained(gen_model_path, trust_remote_code=True)
|
31 |
gen_model = AutoModel.from_pretrained(gen_model_path, trust_remote_code=True, attn_implementation='sdpa', torch_dtype=torch.bfloat16)
|
32 |
gen_model.eval()
|
33 |
gen_model.to(device)
|
34 |
-
print("
|
35 |
-
|
36 |
-
@spaces.GPU(duration=100)
|
37 |
-
def process_pdf(pdf_file, max_pages, progress=gr.Progress()):
|
38 |
-
doc = fitz.open("pdf", pdf_file)
|
39 |
-
num_pages = min(max_pages, len(doc))
|
40 |
-
|
41 |
-
images = []
|
42 |
-
for page_num in progress.tqdm(range(num_pages)):
|
43 |
-
page = doc[page_num]
|
44 |
-
pix = page.get_pixmap(dpi=200)
|
45 |
-
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
46 |
-
images.append(image)
|
47 |
-
|
48 |
-
return images
|
49 |
|
50 |
@spaces.GPU(duration=50)
|
51 |
def answer_question(images, question):
|
52 |
global gen_model, gen_tokenizer
|
53 |
-
images_ = [
|
54 |
msgs = [{'role': 'user', 'content': [question, *images_]}]
|
55 |
answer = gen_model.chat(
|
56 |
image=None,
|
@@ -61,44 +139,43 @@ def answer_question(images, question):
|
|
61 |
return answer
|
62 |
|
63 |
with gr.Blocks() as app:
|
64 |
-
gr.Markdown("#
|
65 |
-
|
66 |
-
gr.Markdown("""
|
67 |
-
This application uses a Vision Language Model to answer questions about PDF documents.
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
5. Click "Answer Question" to get the model's response
|
74 |
-
""")
|
75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
with gr.Row():
|
77 |
-
file_input = gr.File(type="binary", label="Upload PDF")
|
78 |
-
max_pages = gr.Number(value=10, minimum=1, maximum=50, step=1, label="Maximum number of pages to process")
|
79 |
process_button = gr.Button("Process PDF")
|
|
|
|
|
|
|
80 |
|
81 |
with gr.Row():
|
82 |
query_input = gr.Text(label="Your Question")
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
def process_and_show(pdf_file, max_pages):
|
89 |
-
images = process_pdf(pdf_file, max_pages)
|
90 |
-
return gr.Gallery.update(value=images, visible=True)
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
outputs=images_output
|
96 |
-
)
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
outputs=gen_model_response
|
102 |
-
)
|
103 |
|
104 |
-
app.launch()
|
|
|
1 |
#!/usr/bin/env python
|
2 |
# -*- coding: utf-8 -*-
|
3 |
|
4 |
+
|
5 |
import tqdm
|
6 |
from PIL import Image
|
7 |
+
import hashlib
|
8 |
import torch
|
9 |
import fitz
|
10 |
+
import threading
|
11 |
import gradio as gr
|
12 |
import spaces
|
13 |
import os
|
14 |
from transformers import AutoModel
|
15 |
from transformers import AutoTokenizer
|
16 |
import numpy as np
|
17 |
+
import json
|
18 |
|
19 |
+
cache_dir = '/data/kb_cache'
|
20 |
os.makedirs(cache_dir, exist_ok=True)
|
21 |
|
22 |
+
def get_image_md5(img: Image.Image):
|
23 |
+
img_byte_array = img.tobytes()
|
24 |
+
hash_md5 = hashlib.md5()
|
25 |
+
hash_md5.update(img_byte_array)
|
26 |
+
hex_digest = hash_md5.hexdigest()
|
27 |
+
return hex_digest
|
28 |
+
|
29 |
+
def calculate_md5_from_binary(binary_data):
|
30 |
+
hash_md5 = hashlib.md5()
|
31 |
+
hash_md5.update(binary_data)
|
32 |
+
return hash_md5.hexdigest()
|
33 |
+
|
34 |
+
@spaces.GPU(duration=100)
|
35 |
+
def add_pdf_gradio(pdf_file_binary, progress=gr.Progress()):
|
36 |
+
global model, tokenizer
|
37 |
+
model.eval()
|
38 |
+
|
39 |
+
this_cache_dir = os.path.join(cache_dir, 'temp_cache')
|
40 |
+
os.makedirs(this_cache_dir, exist_ok=True)
|
41 |
+
|
42 |
+
with open(os.path.join(this_cache_dir, f"src.pdf"), 'wb') as file:
|
43 |
+
file.write(pdf_file_binary)
|
44 |
+
|
45 |
+
dpi = 200
|
46 |
+
doc = fitz.open("pdf", pdf_file_binary)
|
47 |
+
|
48 |
+
reps_list = []
|
49 |
+
images = []
|
50 |
+
image_md5s = []
|
51 |
+
|
52 |
+
for page in progress.tqdm(doc):
|
53 |
+
pix = page.get_pixmap(dpi=dpi)
|
54 |
+
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
55 |
+
image_md5 = get_image_md5(image)
|
56 |
+
image_md5s.append(image_md5)
|
57 |
+
with torch.no_grad():
|
58 |
+
reps = model(text=[''], image=[image], tokenizer=tokenizer).reps
|
59 |
+
reps_list.append(reps.squeeze(0).cpu().numpy())
|
60 |
+
images.append(image)
|
61 |
+
|
62 |
+
for idx in range(len(images)):
|
63 |
+
image = images[idx]
|
64 |
+
image_md5 = image_md5s[idx]
|
65 |
+
cache_image_path = os.path.join(this_cache_dir, f"{image_md5}.png")
|
66 |
+
image.save(cache_image_path)
|
67 |
+
|
68 |
+
np.save(os.path.join(this_cache_dir, f"reps.npy"), reps_list)
|
69 |
+
|
70 |
+
with open(os.path.join(this_cache_dir, f"md5s.txt"), 'w') as f:
|
71 |
+
for item in image_md5s:
|
72 |
+
f.write(item+'\n')
|
73 |
+
|
74 |
+
return "PDF processed successfully!"
|
75 |
+
|
76 |
+
@spaces.GPU(duration=50)
|
77 |
+
def retrieve_gradio(query: str, topk: int):
|
78 |
+
global model, tokenizer
|
79 |
+
|
80 |
+
model.eval()
|
81 |
+
|
82 |
+
target_cache_dir = os.path.join(cache_dir, 'temp_cache')
|
83 |
+
|
84 |
+
if not os.path.exists(target_cache_dir):
|
85 |
+
return None
|
86 |
+
|
87 |
+
md5s = []
|
88 |
+
with open(os.path.join(target_cache_dir, f"md5s.txt"), 'r') as f:
|
89 |
+
for line in f:
|
90 |
+
md5s.append(line.rstrip('\n'))
|
91 |
+
|
92 |
+
doc_reps = np.load(os.path.join(target_cache_dir, f"reps.npy"))
|
93 |
+
|
94 |
+
query_with_instruction = "Represent this query for retrieving relevant document: " + query
|
95 |
+
with torch.no_grad():
|
96 |
+
query_rep = model(text=[query_with_instruction], image=[None], tokenizer=tokenizer).reps.squeeze(0).cpu()
|
97 |
+
|
98 |
+
doc_reps_cat = torch.stack([torch.Tensor(i) for i in doc_reps], dim=0)
|
99 |
+
|
100 |
+
similarities = torch.matmul(query_rep, doc_reps_cat.T)
|
101 |
+
|
102 |
+
topk_values, topk_doc_ids = torch.topk(similarities, k=topk)
|
103 |
+
|
104 |
+
topk_doc_ids_np = topk_doc_ids.cpu().numpy()
|
105 |
+
|
106 |
+
images_topk = [Image.open(os.path.join(target_cache_dir, f"{md5s[idx]}.png")) for idx in topk_doc_ids_np]
|
107 |
+
|
108 |
+
return images_topk
|
109 |
+
|
110 |
device = 'cuda'
|
111 |
|
112 |
+
print("emb model load begin...")
|
113 |
+
model_path = 'RhapsodyAI/minicpm-visual-embedding-v0' # replace with your local model path
|
114 |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
115 |
model = AutoModel.from_pretrained(model_path, trust_remote_code=True)
|
116 |
model.eval()
|
117 |
model.to(device)
|
118 |
+
print("emb model load success!")
|
119 |
|
120 |
+
print("gen model load begin...")
|
121 |
gen_model_path = 'openbmb/MiniCPM-V-2_6'
|
122 |
gen_tokenizer = AutoTokenizer.from_pretrained(gen_model_path, trust_remote_code=True)
|
123 |
gen_model = AutoModel.from_pretrained(gen_model_path, trust_remote_code=True, attn_implementation='sdpa', torch_dtype=torch.bfloat16)
|
124 |
gen_model.eval()
|
125 |
gen_model.to(device)
|
126 |
+
print("gen model load success!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
@spaces.GPU(duration=50)
|
129 |
def answer_question(images, question):
|
130 |
global gen_model, gen_tokenizer
|
131 |
+
images_ = [Image.open(image[0]).convert('RGB') for image in images]
|
132 |
msgs = [{'role': 'user', 'content': [question, *images_]}]
|
133 |
answer = gen_model.chat(
|
134 |
image=None,
|
|
|
139 |
return answer
|
140 |
|
141 |
with gr.Blocks() as app:
|
142 |
+
gr.Markdown("# MiniCPMV-RAG-PDFQA: Two Vision Language Models Enable End-to-End RAG")
|
|
|
|
|
|
|
143 |
|
144 |
+
gr.Markdown("""
|
145 |
+
- A Vision Language Model Dense Retriever ([minicpm-visual-embedding-v0](https://huggingface.co/RhapsodyAI/minicpm-visual-embedding-v0)) **directly reads** your PDFs **without need of OCR**, produce **multimodal dense representations** and build your personal library.
|
146 |
+
|
147 |
+
- **Ask a question**, it retrieves the most relevant pages, then [MiniCPM-V-2.6](https://huggingface.co/spaces/openbmb/MiniCPM-V-2_6) will answer your question based on pages recalled, with strong multi-image understanding capability.
|
|
|
|
|
148 |
|
149 |
+
- It helps you read a long **visually-intensive** or **text-oriented** PDF document and find the pages that answer your question.
|
150 |
+
|
151 |
+
- It helps you build a personal library and retrieve book pages from a large collection of books.
|
152 |
+
|
153 |
+
- It works like a human: read, store, retrieve, and answer with full vision.
|
154 |
+
""")
|
155 |
+
|
156 |
+
gr.Markdown("- Currently online demo support PDF document with less than 50 pages due to GPU time limit. Deploy on your own machine for longer PDFs and books.")
|
157 |
+
|
158 |
with gr.Row():
|
159 |
+
file_input = gr.File(type="binary", label="Step 1: Upload PDF")
|
|
|
160 |
process_button = gr.Button("Process PDF")
|
161 |
+
file_result = gr.Textbox(label="PDF Process Status")
|
162 |
+
|
163 |
+
process_button.click(add_pdf_gradio, inputs=[file_input], outputs=file_result)
|
164 |
|
165 |
with gr.Row():
|
166 |
query_input = gr.Text(label="Your Question")
|
167 |
+
topk_input = gr.Number(value=5, minimum=1, maximum=10, step=1, label="Number of Pages to Retrieve")
|
168 |
+
retrieve_button = gr.Button("Retrieve Pages")
|
169 |
+
images_output = gr.Gallery(label="Retrieved Pages")
|
170 |
+
|
171 |
+
retrieve_button.click(retrieve_gradio, inputs=[query_input, topk_input], outputs=images_output)
|
|
|
|
|
|
|
172 |
|
173 |
+
with gr.Row():
|
174 |
+
answer_button = gr.Button("Answer Question")
|
175 |
+
gen_model_response = gr.Textbox(label="MiniCPM-V-2.6's Answer")
|
|
|
|
|
176 |
|
177 |
+
answer_button.click(fn=answer_question, inputs=[images_output, query_input], outputs=gen_model_response)
|
178 |
+
|
179 |
+
gr.Markdown("By using this demo, you agree to share your use data with us for research purpose, to help improve user experience.")
|
|
|
|
|
180 |
|
181 |
+
app.launch()
|