Spaces:
Sleeping
Sleeping
File size: 1,265 Bytes
02a29e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import streamlit as st
import pandas as pd
from io import BytesIO
from PIL import Image
import time
from transformers import AutoImageProcessor, ViTForImageClassification
import torch
image_processor = AutoImageProcessor.from_pretrained("dhanesh123in/image_classification_obipix_birdID")
model_s = ViTForImageClassification.from_pretrained("dhanesh123in/image_classification_obipix_birdID")
st.title("Welcome to Bird Species Identification App!")
uploaded_file = st.file_uploader("Upload Image")
if uploaded_file is not None:
# To read file as bytes:
bytes_data = uploaded_file.getvalue()
image = Image.open(BytesIO(bytes_data))
inputs = image_processor(image, return_tensors="pt")
with torch.no_grad():
logits = model_s(**inputs).logits
# model predicts one of the 1000 ImageNet classes
predicted_label = logits.argmax(-1).item()
prediction=model_s.config.id2label[predicted_label]
with st.spinner('Our well trained AI assistant is looking at your image...'):
time.sleep(5)
st.success("Prediction is "+prediction)
st.image(bytes_data)
x=st.radio("Was this correct?",["Yes","No"],horizontal=True)
if (x=="No"):
st.write("Oops.. more to learn I guess")
|