Spaces:
Sleeping
Sleeping
Commit
·
b9dd4c2
1
Parent(s):
730be47
Add Colors to Pie
Browse files
app.py
CHANGED
@@ -86,12 +86,6 @@ def generate_wordcloud(text, font_path, colormap, title):
|
|
86 |
# Add download link for word cloud
|
87 |
st.markdown(get_image_download_link(f"{title}.png"), unsafe_allow_html=True)
|
88 |
|
89 |
-
def get_image_download_link(image_path):
|
90 |
-
with open(image_path, "rb") as image_file:
|
91 |
-
b64 = base64.b64encode(image_file.read()).decode()
|
92 |
-
href = f'<a href="data:file/png;base64,{b64}" download="{image_path}">Download {image_path}</a>'
|
93 |
-
return href
|
94 |
-
|
95 |
def analyze_sentiment(text):
|
96 |
result = sentiment_pipe(text)[0]
|
97 |
return result['label'].lower(), result['score']
|
@@ -117,6 +111,12 @@ def get_example_download_link(file_path, link_text):
|
|
117 |
b64 = base64.b64encode(file.read()).decode()
|
118 |
return f'<a href="data:file/txt;base64,{b64}" download="{os.path.basename(file_path)}">{link_text}</a>'
|
119 |
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
def combined_analysis(text, slank_formal_df):
|
121 |
texts = text.split('\n')
|
122 |
results = []
|
@@ -147,9 +147,24 @@ def combined_analysis(text, slank_formal_df):
|
|
147 |
unsafe_allow_html=True
|
148 |
)
|
149 |
|
150 |
-
|
151 |
sentiment_counts = df['Sentiment'].value_counts()
|
152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
# Calculate sentiment average
|
155 |
sentiment_average = df['Score Sentiment'].mean()
|
@@ -168,8 +183,26 @@ def combined_analysis(text, slank_formal_df):
|
|
168 |
st.markdown('</div>', unsafe_allow_html=True)
|
169 |
|
170 |
# Emotion pie chart
|
|
|
171 |
emotion_counts = df['Emotion'].value_counts()
|
172 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
|
174 |
# Calculate emotion average
|
175 |
emotion_average = df['Score Emotion'].mean()
|
@@ -186,6 +219,7 @@ def combined_analysis(text, slank_formal_df):
|
|
186 |
st.markdown('<div class="chart-container">', unsafe_allow_html=True)
|
187 |
st.plotly_chart(fig_emotion, use_container_width=True)
|
188 |
st.markdown('</div>', unsafe_allow_html=True)
|
|
|
189 |
# Generate word clouds
|
190 |
font_path = os.path.join('assets', 'Poppins-Regular.ttf')
|
191 |
|
@@ -255,9 +289,24 @@ def process_file(file, slank_formal_df):
|
|
255 |
unsafe_allow_html=True
|
256 |
)
|
257 |
|
258 |
-
|
259 |
sentiment_counts = df['Sentiment'].value_counts()
|
260 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
|
262 |
# Calculate sentiment average
|
263 |
sentiment_average = df['Score Sentiment'].mean()
|
@@ -276,8 +325,26 @@ def process_file(file, slank_formal_df):
|
|
276 |
st.markdown('</div>', unsafe_allow_html=True)
|
277 |
|
278 |
# Emotion pie chart
|
|
|
279 |
emotion_counts = df['Emotion'].value_counts()
|
280 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
|
282 |
# Calculate emotion average
|
283 |
emotion_average = df['Score Emotion'].mean()
|
|
|
86 |
# Add download link for word cloud
|
87 |
st.markdown(get_image_download_link(f"{title}.png"), unsafe_allow_html=True)
|
88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
def analyze_sentiment(text):
|
90 |
result = sentiment_pipe(text)[0]
|
91 |
return result['label'].lower(), result['score']
|
|
|
111 |
b64 = base64.b64encode(file.read()).decode()
|
112 |
return f'<a href="data:file/txt;base64,{b64}" download="{os.path.basename(file_path)}">{link_text}</a>'
|
113 |
|
114 |
+
def get_image_download_link(image_path):
|
115 |
+
with open(image_path, "rb") as image_file:
|
116 |
+
b64 = base64.b64encode(image_file.read()).decode()
|
117 |
+
href = f'<a href="data:file/png;base64,{b64}" download="{image_path}">Download {image_path}</a>'
|
118 |
+
return href
|
119 |
+
|
120 |
def combined_analysis(text, slank_formal_df):
|
121 |
texts = text.split('\n')
|
122 |
results = []
|
|
|
147 |
unsafe_allow_html=True
|
148 |
)
|
149 |
|
150 |
+
# Sentiment pie chart
|
151 |
sentiment_counts = df['Sentiment'].value_counts()
|
152 |
+
sentiment_colors = {
|
153 |
+
'positive': px.colors.qualitative.Set3[0],
|
154 |
+
'negative': px.colors.qualitative.Set3[3],
|
155 |
+
'neutral': px.colors.qualitative.Set3[1]
|
156 |
+
}
|
157 |
+
|
158 |
+
fig_sentiment = px.pie(
|
159 |
+
sentiment_counts,
|
160 |
+
values=sentiment_counts.values,
|
161 |
+
names=sentiment_counts.index,
|
162 |
+
title='Sentiment Distribution',
|
163 |
+
width=400,
|
164 |
+
height=400,
|
165 |
+
color=sentiment_counts.index,
|
166 |
+
color_discrete_map=sentiment_colors
|
167 |
+
)
|
168 |
|
169 |
# Calculate sentiment average
|
170 |
sentiment_average = df['Score Sentiment'].mean()
|
|
|
183 |
st.markdown('</div>', unsafe_allow_html=True)
|
184 |
|
185 |
# Emotion pie chart
|
186 |
+
# Sentiment pie chart
|
187 |
emotion_counts = df['Emotion'].value_counts()
|
188 |
+
emotion_colors = {
|
189 |
+
'marah': px.colors.qualitative.Safe[9],
|
190 |
+
'sedih': px.colors.qualitative.Safe[1],
|
191 |
+
'senang': px.colors.qualitative.Safe[0],
|
192 |
+
'cinta': px.colors.qualitative.Safe[2],
|
193 |
+
'jijik': px.colors.qualitative.Safe[6],
|
194 |
+
'takut': px.colors.qualitative.Safe[7],
|
195 |
+
}
|
196 |
+
fig_emotion = px.pie(
|
197 |
+
emotion_counts,
|
198 |
+
values=emotion_counts.values,
|
199 |
+
names=emotion_counts.index,
|
200 |
+
title='Emotion Distribution',
|
201 |
+
width=400,
|
202 |
+
height=400,
|
203 |
+
color=emotion_counts.index,
|
204 |
+
color_discrete_map=emotion_colors
|
205 |
+
)
|
206 |
|
207 |
# Calculate emotion average
|
208 |
emotion_average = df['Score Emotion'].mean()
|
|
|
219 |
st.markdown('<div class="chart-container">', unsafe_allow_html=True)
|
220 |
st.plotly_chart(fig_emotion, use_container_width=True)
|
221 |
st.markdown('</div>', unsafe_allow_html=True)
|
222 |
+
|
223 |
# Generate word clouds
|
224 |
font_path = os.path.join('assets', 'Poppins-Regular.ttf')
|
225 |
|
|
|
289 |
unsafe_allow_html=True
|
290 |
)
|
291 |
|
292 |
+
# Sentiment pie chart
|
293 |
sentiment_counts = df['Sentiment'].value_counts()
|
294 |
+
sentiment_colors = {
|
295 |
+
'positive': px.colors.qualitative.Set3[0],
|
296 |
+
'negative': px.colors.qualitative.Set3[3],
|
297 |
+
'neutral': px.colors.qualitative.Set3[1]
|
298 |
+
}
|
299 |
+
|
300 |
+
fig_sentiment = px.pie(
|
301 |
+
sentiment_counts,
|
302 |
+
values=sentiment_counts.values,
|
303 |
+
names=sentiment_counts.index,
|
304 |
+
title='Sentiment Distribution',
|
305 |
+
width=400,
|
306 |
+
height=400,
|
307 |
+
color=sentiment_counts.index,
|
308 |
+
color_discrete_map=sentiment_colors
|
309 |
+
)
|
310 |
|
311 |
# Calculate sentiment average
|
312 |
sentiment_average = df['Score Sentiment'].mean()
|
|
|
325 |
st.markdown('</div>', unsafe_allow_html=True)
|
326 |
|
327 |
# Emotion pie chart
|
328 |
+
# Sentiment pie chart
|
329 |
emotion_counts = df['Emotion'].value_counts()
|
330 |
+
emotion_colors = {
|
331 |
+
'marah': px.colors.qualitative.Safe[9],
|
332 |
+
'sedih': px.colors.qualitative.Safe[1],
|
333 |
+
'senang': px.colors.qualitative.Safe[0],
|
334 |
+
'cinta': px.colors.qualitative.Safe[2],
|
335 |
+
'jijik': px.colors.qualitative.Safe[6],
|
336 |
+
'takut': px.colors.qualitative.Safe[7],
|
337 |
+
}
|
338 |
+
fig_emotion = px.pie(
|
339 |
+
emotion_counts,
|
340 |
+
values=emotion_counts.values,
|
341 |
+
names=emotion_counts.index,
|
342 |
+
title='Emotion Distribution',
|
343 |
+
width=400,
|
344 |
+
height=400,
|
345 |
+
color=emotion_counts.index,
|
346 |
+
color_discrete_map=emotion_colors
|
347 |
+
)
|
348 |
|
349 |
# Calculate emotion average
|
350 |
emotion_average = df['Score Emotion'].mean()
|