dhanikitkat commited on
Commit
b9dd4c2
·
1 Parent(s): 730be47

Add Colors to Pie

Browse files
Files changed (1) hide show
  1. app.py +79 -12
app.py CHANGED
@@ -86,12 +86,6 @@ def generate_wordcloud(text, font_path, colormap, title):
86
  # Add download link for word cloud
87
  st.markdown(get_image_download_link(f"{title}.png"), unsafe_allow_html=True)
88
 
89
- def get_image_download_link(image_path):
90
- with open(image_path, "rb") as image_file:
91
- b64 = base64.b64encode(image_file.read()).decode()
92
- href = f'<a href="data:file/png;base64,{b64}" download="{image_path}">Download {image_path}</a>'
93
- return href
94
-
95
  def analyze_sentiment(text):
96
  result = sentiment_pipe(text)[0]
97
  return result['label'].lower(), result['score']
@@ -117,6 +111,12 @@ def get_example_download_link(file_path, link_text):
117
  b64 = base64.b64encode(file.read()).decode()
118
  return f'<a href="data:file/txt;base64,{b64}" download="{os.path.basename(file_path)}">{link_text}</a>'
119
 
 
 
 
 
 
 
120
  def combined_analysis(text, slank_formal_df):
121
  texts = text.split('\n')
122
  results = []
@@ -147,9 +147,24 @@ def combined_analysis(text, slank_formal_df):
147
  unsafe_allow_html=True
148
  )
149
 
150
- # Sentiment pie chart
151
  sentiment_counts = df['Sentiment'].value_counts()
152
- fig_sentiment = px.pie(sentiment_counts, values=sentiment_counts.values, names=sentiment_counts.index, title='Sentiment Distribution', width=400, height=400)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
153
 
154
  # Calculate sentiment average
155
  sentiment_average = df['Score Sentiment'].mean()
@@ -168,8 +183,26 @@ def combined_analysis(text, slank_formal_df):
168
  st.markdown('</div>', unsafe_allow_html=True)
169
 
170
  # Emotion pie chart
 
171
  emotion_counts = df['Emotion'].value_counts()
172
- fig_emotion = px.pie(emotion_counts, values=emotion_counts.values, names=emotion_counts.index, title='Emotion Distribution', width=400, height=400)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
173
 
174
  # Calculate emotion average
175
  emotion_average = df['Score Emotion'].mean()
@@ -186,6 +219,7 @@ def combined_analysis(text, slank_formal_df):
186
  st.markdown('<div class="chart-container">', unsafe_allow_html=True)
187
  st.plotly_chart(fig_emotion, use_container_width=True)
188
  st.markdown('</div>', unsafe_allow_html=True)
 
189
  # Generate word clouds
190
  font_path = os.path.join('assets', 'Poppins-Regular.ttf')
191
 
@@ -255,9 +289,24 @@ def process_file(file, slank_formal_df):
255
  unsafe_allow_html=True
256
  )
257
 
258
- # Sentiment pie chart
259
  sentiment_counts = df['Sentiment'].value_counts()
260
- fig_sentiment = px.pie(sentiment_counts, values=sentiment_counts.values, names=sentiment_counts.index, title='Sentiment Distribution', width=400, height=400)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
261
 
262
  # Calculate sentiment average
263
  sentiment_average = df['Score Sentiment'].mean()
@@ -276,8 +325,26 @@ def process_file(file, slank_formal_df):
276
  st.markdown('</div>', unsafe_allow_html=True)
277
 
278
  # Emotion pie chart
 
279
  emotion_counts = df['Emotion'].value_counts()
280
- fig_emotion = px.pie(emotion_counts, values=emotion_counts.values, names=emotion_counts.index, title='Emotion Distribution', width=400, height=400)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
281
 
282
  # Calculate emotion average
283
  emotion_average = df['Score Emotion'].mean()
 
86
  # Add download link for word cloud
87
  st.markdown(get_image_download_link(f"{title}.png"), unsafe_allow_html=True)
88
 
 
 
 
 
 
 
89
  def analyze_sentiment(text):
90
  result = sentiment_pipe(text)[0]
91
  return result['label'].lower(), result['score']
 
111
  b64 = base64.b64encode(file.read()).decode()
112
  return f'<a href="data:file/txt;base64,{b64}" download="{os.path.basename(file_path)}">{link_text}</a>'
113
 
114
+ def get_image_download_link(image_path):
115
+ with open(image_path, "rb") as image_file:
116
+ b64 = base64.b64encode(image_file.read()).decode()
117
+ href = f'<a href="data:file/png;base64,{b64}" download="{image_path}">Download {image_path}</a>'
118
+ return href
119
+
120
  def combined_analysis(text, slank_formal_df):
121
  texts = text.split('\n')
122
  results = []
 
147
  unsafe_allow_html=True
148
  )
149
 
150
+ # Sentiment pie chart
151
  sentiment_counts = df['Sentiment'].value_counts()
152
+ sentiment_colors = {
153
+ 'positive': px.colors.qualitative.Set3[0],
154
+ 'negative': px.colors.qualitative.Set3[3],
155
+ 'neutral': px.colors.qualitative.Set3[1]
156
+ }
157
+
158
+ fig_sentiment = px.pie(
159
+ sentiment_counts,
160
+ values=sentiment_counts.values,
161
+ names=sentiment_counts.index,
162
+ title='Sentiment Distribution',
163
+ width=400,
164
+ height=400,
165
+ color=sentiment_counts.index,
166
+ color_discrete_map=sentiment_colors
167
+ )
168
 
169
  # Calculate sentiment average
170
  sentiment_average = df['Score Sentiment'].mean()
 
183
  st.markdown('</div>', unsafe_allow_html=True)
184
 
185
  # Emotion pie chart
186
+ # Sentiment pie chart
187
  emotion_counts = df['Emotion'].value_counts()
188
+ emotion_colors = {
189
+ 'marah': px.colors.qualitative.Safe[9],
190
+ 'sedih': px.colors.qualitative.Safe[1],
191
+ 'senang': px.colors.qualitative.Safe[0],
192
+ 'cinta': px.colors.qualitative.Safe[2],
193
+ 'jijik': px.colors.qualitative.Safe[6],
194
+ 'takut': px.colors.qualitative.Safe[7],
195
+ }
196
+ fig_emotion = px.pie(
197
+ emotion_counts,
198
+ values=emotion_counts.values,
199
+ names=emotion_counts.index,
200
+ title='Emotion Distribution',
201
+ width=400,
202
+ height=400,
203
+ color=emotion_counts.index,
204
+ color_discrete_map=emotion_colors
205
+ )
206
 
207
  # Calculate emotion average
208
  emotion_average = df['Score Emotion'].mean()
 
219
  st.markdown('<div class="chart-container">', unsafe_allow_html=True)
220
  st.plotly_chart(fig_emotion, use_container_width=True)
221
  st.markdown('</div>', unsafe_allow_html=True)
222
+
223
  # Generate word clouds
224
  font_path = os.path.join('assets', 'Poppins-Regular.ttf')
225
 
 
289
  unsafe_allow_html=True
290
  )
291
 
292
+ # Sentiment pie chart
293
  sentiment_counts = df['Sentiment'].value_counts()
294
+ sentiment_colors = {
295
+ 'positive': px.colors.qualitative.Set3[0],
296
+ 'negative': px.colors.qualitative.Set3[3],
297
+ 'neutral': px.colors.qualitative.Set3[1]
298
+ }
299
+
300
+ fig_sentiment = px.pie(
301
+ sentiment_counts,
302
+ values=sentiment_counts.values,
303
+ names=sentiment_counts.index,
304
+ title='Sentiment Distribution',
305
+ width=400,
306
+ height=400,
307
+ color=sentiment_counts.index,
308
+ color_discrete_map=sentiment_colors
309
+ )
310
 
311
  # Calculate sentiment average
312
  sentiment_average = df['Score Sentiment'].mean()
 
325
  st.markdown('</div>', unsafe_allow_html=True)
326
 
327
  # Emotion pie chart
328
+ # Sentiment pie chart
329
  emotion_counts = df['Emotion'].value_counts()
330
+ emotion_colors = {
331
+ 'marah': px.colors.qualitative.Safe[9],
332
+ 'sedih': px.colors.qualitative.Safe[1],
333
+ 'senang': px.colors.qualitative.Safe[0],
334
+ 'cinta': px.colors.qualitative.Safe[2],
335
+ 'jijik': px.colors.qualitative.Safe[6],
336
+ 'takut': px.colors.qualitative.Safe[7],
337
+ }
338
+ fig_emotion = px.pie(
339
+ emotion_counts,
340
+ values=emotion_counts.values,
341
+ names=emotion_counts.index,
342
+ title='Emotion Distribution',
343
+ width=400,
344
+ height=400,
345
+ color=emotion_counts.index,
346
+ color_discrete_map=emotion_colors
347
+ )
348
 
349
  # Calculate emotion average
350
  emotion_average = df['Score Emotion'].mean()